St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The dynamical fate of self-gravitating disc fragments after tidal downsizing

Thumbnail
View/Open
Forgan_2015_MNRAS_Dynamical.pdf (1.119Mb)
Date
11/02/2015
Author
Forgan, D.
Parker, R.J.
Rice, K.
Keywords
Accretion, accretion discs
Methods: numerical
Methods: statistical
Planets and satellites: formation
Stars: formation
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The gravitational instability model of planet/brown dwarf formation proposes that protostellar discs can fragment into objectswith masses above a few Jupiter masses at large semimajor axis. Tidal downsizing may reduce both the object mass and semimajor axis. However, most studies of tidal downsizing end when the protostellar disc disperses, while the system is embedded in its parent star-forming region. To compare disc fragment descendants with exoplanet and brown dwarf observations, the subsequent dynamical evolution must be explored. We carry out N-body integrations of fragment-fragment scattering in multi-object star systems, and star systems embedded in substructured clusters. In both cases, we use initial conditions generated by population synthesis models of tidal downsizing. The scattering simulations produce a wide range of eccentricities. The ejection rate is around 25 per cent. The ejecta mass distribution is similar to that for all objects, with a velocity dispersion consistent with those produced by full hydrodynamic simulations. The semimajor axis distribution after scattering extends to parsec scales. In the cluster simulations, 13 per cent of the objects are ejected from their planetary system, and around 10 per cent experience significant orbit modification. A small number of objects are recaptured on high-eccentricity, high-inclination orbits. The velocity distribution of ejecta is similar to that produced by fragment-fragment scattering. If fragment-fragment scattering and cluster stripping act together, then disc fragmentation should be efficient at producing free-floating substellar objects, and hence characterizing the free-floating planet population will provide strong constraints on the frequency of disc fragmentation.
Citation
Forgan , D , Parker , R J & Rice , K 2015 , ' The dynamical fate of self-gravitating disc fragments after tidal downsizing ' , Monthly Notices of the Royal Astronomical Society , vol. 447 , no. 1 , pp. 836-845 . https://doi.org/10.1093/mnras/stu2504
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stu2504
ISSN
0035-8711
Type
Journal article
Rights
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
Description
DF and KR acknowledge support from STFC grant ST/J001422/1. DF also acknowledges support from the ECOGAL ERC Advanced Grant Programme. RJP acknowledges support from the Royal Astronomical Society in the form of a research fellowship.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/6161

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter