St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sperm whale response to tag boat presence : biologically informed hidden state models quantify lost feeding opportunities

Thumbnail
View/Open
Miller_2015_Eco_SpermWhale_CC.pdf (11.98Mb)
Date
21/01/2015
Author
Isojunno, S.
Miller, P.J.O.
Keywords
Bayesian
DTAG
Functional state
Northern Norway
Physeter microcephalus
Research effects
State-dependent likelihood
State-switching model
Suction-cup tag attachment
Time-series model
QH301 Biology
QL Zoology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Animal-attached sensors provide invaluable data to describe behavior of cryptic species, such as cetaceans, and are increasingly used to assess anthropogenic disturbance effects. Tag deployment and handling may itself alter the behavior of study animals and there is a need to assess if and when behavior recovers to an undisturbed level. Not all behavioral changes have fitness consequences, and our goal is to derive metrics that can be linked to fitness implications, such as time and energy allocation to different functional behaviors. Here we detail an approach that incorporates biological knowledge and multiple streams of tag-recorded data in a hidden state-switching model to estimate time series of functional behavioral st ates for 12 sperm whales off Norway. Foraging, recovery and resting states were specified in the hidden state model by state-dependent likelihood structures. Comparison of hidden state models revealed a parsimonious set of input time series, and supported the inclusion of a less informed 'silent active' state. There was a high agreement between state estimates and expert classifications. We then used the estimated states in time series models to test three hypotheses for behavioral change during suction-cup tag deployment procedures: change in behavioral states, change in prey capture attempts and locomotion cost, given behavioral state. Sperm whales spent 34% less time at the sea surface and 60% more time in non-foraging silent active state in the presence of the tag boat (''tagging period'' 0.1-2.8 h) than during post-tagging baseline period (1.8-20.8 h). No comparable pre-tagging baseline data were available. Nevertheless, time-decaying models of tagging effects were not retained in model selection, indicating a short-term effect that ceased immediately after the tagging period. We did not find changes in energetic proxies, given behavioral state, however changes in functional state budget indicate costs in terms of lost feeding opportunities and recovery time at surface. These results are useful to quantitatively identify data periods that should not be considered baseline behavior within tag recordings. This functional state approach proves effective to quantify disturbance in terms of time and energy allocation that is based upon general principles that can be applied to other species and biologging applications.
Citation
Isojunno , S & Miller , P J O 2015 , ' Sperm whale response to tag boat presence : biologically informed hidden state models quantify lost feeding opportunities ' , Ecosphere , vol. 6 , no. 1 . https://doi.org/10.1890/ES14-00130.1
Publication
Ecosphere
Status
Peer reviewed
DOI
https://doi.org/10.1890/ES14-00130.1
ISSN
2150-8925
Type
Journal article
Rights
© 2015 Isojunno and Miller. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/3.0/
Description
The authors acknowledge the UK Ministry of Defence, U.S. Office of Naval Research, and World Wildlife Fund (Norway) for funding this research.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/6112

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter