Evaluating unsupervised fault detection in self-healing systems using stochastic primitives
View/ Open
Date
28/01/2015Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Autonomous fault detection represents one approach for reducing operational costs in large-scale computing environments. However, little empirical evidence exists regarding the implementation or comparison of such methodologies, or offers proof that such approaches reduce costs. This paper compares the effectiveness of several types of stochastic primitives using unsupervised learning to heuristically determine the root causes of faults. The results suggest that self-healing systems frameworks leveraging these techniques can reliably and autonomously determine the source of an anomaly within as little as five minutes. This finding lays the foundation for determining the potential these approaches have for reducing operational costs and ultimately concludes with new avenues for exploring anomaly prediction.
Citation
Schneider , C , Barker , A D & Dobson , S A 2015 , ' Evaluating unsupervised fault detection in self-healing systems using stochastic primitives ' , EAI Endorsed Transactions on Self-Adaptive Systems , vol. 15 , no. 1 , e3 . https://doi.org/10.4108/sas.1.1.e3
Publication
EAI Endorsed Transactions on Self-Adaptive Systems
Status
Peer reviewed
Type
Journal article
Rights
© 2015. Schneider et al., licensed to ICST. This is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
Description
This research was partially supported by the Scottish Informatics and Computer Science Alliance (SICSA).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.