Show simple item record

Files in this item


Item metadata

dc.contributor.authorTroscheit, S.
dc.identifier.citationTroscheit , S 2014 , ' Hölder differentiability of self-conformal devil's staircases ' , Mathematical Proceedings of the Cambridge Philosophical Society , vol. 156 , no. 2 , pp. 295-311 .
dc.identifier.otherPURE: 145987334
dc.identifier.otherPURE UUID: 21dc9c13-e6ec-4d5b-bf96-c83860fed676
dc.identifier.otherScopus: 84897026448
dc.identifier.otherWOS: 000337084800008
dc.description.abstractIn this paper we consider the probability distribution function of a Gibbs measure supported on a self-conformal set given by an iterated function system (devil's staircase) applied to a compact subset of ℝ. We use thermodynamic multifractal formalism to calculate the Hausdorff dimension of the sets Sα 0, Sα ∞ and Sα, the set of points at which this function has, respectively, Hölder derivative 0, ∞ or no derivative in the general sense. This extends recent work by Darst, Dekking, Falconer, Kesseböhmer and Stratmann, and Yao, Zhang and Li by considering arbitrary such Gibbs measures given by a potential function independent of the geometric potential.
dc.relation.ispartofMathematical Proceedings of the Cambridge Philosophical Societyen
dc.rightsCopyright © Cambridge Philosophical Society 2014en
dc.subjectQA Mathematicsen
dc.titleHölder differentiability of self-conformal devil's staircasesen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record