St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of stellar winds on the magnetospheres and potential habitability of exoplanets

Thumbnail
View/Open
See_2014_A_A_Effects.pdf (828.0Kb)
Date
10/2014
Author
See, Wyke Chun Victor
Jardine, M.
Vidotto, A.A.
Marsden, S.C.
Jeffers, S.V.
Do Nascimento, J.D.
Funder
Science & Technology Facilities Council
Grant ID
ST/J001651/1
Keywords
Planets and satellites: magnetic fields
Planet-star interactions
Stars: low-mass
Stars: mass-loss
QB Astronomy
QC Physics
Metadata
Show full item record
Abstract
Context. The principle definition of habitability for exoplanets is whether they can sustain liquid water on their surfaces, i.e. that they orbit within the habitable zone. However, the planet’s magnetosphere should also be considered, since without it, an exoplanet’s atmosphere may be eroded away by stellar winds.Aims. The aim of this paper is to investigate magnetospheric protection of a planet from the effects of stellar winds from solar-mass stars.Methods. We study hypothetical Earth-like exoplanets orbiting in the host star’s habitable zone for a sample of 124 solar-mass stars. These are targets that have been observed by the Bcool Collaboration. Using two wind models, we calculate the magnetospheric extent of each exoplanet. These wind models are computationally inexpensive and allow the community to quickly estimate the magnetospheric size of magnetised Earth-analogues orbiting cool stars.Results. Most of the simulated planets in our sample can maintain a magnetosphere of ~5 Earth radii or larger. This suggests that magnetised Earth analogues in the habitable zones of solar analogues are able to protect their atmospheres and is in contrast to planets around young active M dwarfs. In general, we find that Earth-analogues around solar-type stars, of age 1.5 Gyr or older, can maintain at least a Paleoarchean Earth sized magnetosphere. Our results indicate that planets around 0.6–0.8 solar-mass stars on the low activity side of the Vaughan-Preston gap are the optimum observing targets for habitable Earth analogues.
Citation
See , W C V , Jardine , M , Vidotto , A A , Marsden , S C , Jeffers , S V & Do Nascimento , J D 2014 , ' The effects of stellar winds on the magnetospheres and potential habitability of exoplanets ' , Astronomy & Astrophysics , vol. 570 , A99 . https://doi.org/10.1051/0004-6361/201424323
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201424323
ISSN
0004-6361
Type
Journal article
Rights
Reproduced with permission from Astronomy & Astrophysics, © ESO. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1051/0004-6361/201424323
Description
V.S. acknowledges the support of an STFC studentship. A.A.V. acknowledges support from a Royal Astronomical Society Fellowship and an Ambizione Fellowship from the Swiss National Science Foundation. S.V.J. acknowledges research funding by the Deutsche Forschungsgemeinschaft (DFG) under grant SFB 963/1, project A16.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5868

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter