St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Manganese titanium perovskites as anodes for solid oxide fuel cells

Thumbnail
View/Open
AlejandroOvallePhDThesis.pdf (8.853Mb)
Date
21/02/2008
Author
Ovalle, Alejandro
Supervisor
Irvine, John T. S.
Keywords
SOFC
Anodes
Perovskites
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
A new family of perovskite titanates with formulae La4+nSr8-nTi12-nMnnO38 and La4Sr8Ti12-nMnnO38-δ have been investigated as potential fuel electrode materials for SOFCs. The series La4+nSr8-nTi12-nMnnO38 present layered domains within their structure. As such layers appear to have a large negative effect over the electrochemical properties only a few compounds have been characterised. The series La4Sr8Ti12-nMnnO38-δ present a rhombohedral (R-3c) unit cell at room temperature which becomes cubic when increasing the temperature up to 900°C both in air and in reducing conditions. The primitive volume correlates with the oxygen content for the reduced samples. TGA and magnetic studies have revealed that the Mn present is mainly as Mn⁺³. Preliminary HRTEM investigations have revealed that some crystallographic shears distributed randomly within a perovskite matrix remain in the structure, which implies that the oxygen overstoichiometry is compatible with rhombohedral distortions in the oxygen sublattice. Mn substitution does not have a large impact on the bulk conductivity of the phases studied, which remains close to the values observed in other related titanates, although the grain boundary contributions are largely improved. Relatively low polarisation resistances were observed under both hydrogen and methane conditions for the lowest n compounds of the series. The anodic overpotential for n=1 was fairly low to those reported in the literature for other materials and especially for titanate-based anodes, i.e. a value of 55mV at 0.5A/cm2, at 950°C, under wet hydrogen was obtained. Additionally, a value 72mV was obtained in the same conditions under methane. These values indicate that the use of Mn as dopant for perovskite-related titanates enhanced electrochemical performance of these anodes, especially at high temperatures.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/567

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter