St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

Thumbnail
View/Open
Henderson_2013_POTRSB_Direct.pdf (618.5Kb)
Date
22/09/2014
Author
Henderson, P.A.
Magurran, A.E.
Funder
European Research Council
Grant ID
250189
Keywords
Density-dependence
Stability
Temporal variability
Relative abundance
QH301 Biology
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species-a result of density-dependence-is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the densitydependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change.
Citation
Henderson , P A & Magurran , A E 2014 , ' Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community ' , Proceedings of the Royal Society B: Biological Sciences , vol. 281 , no. 1791 , 20141336 . https://doi.org/10.1098/rspb.2014.1336
Publication
Proceedings of the Royal Society B: Biological Sciences
Status
Peer reviewed
DOI
https://doi.org/10.1098/rspb.2014.1336
ISSN
0962-8452
Type
Journal article
Rights
© 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Description
The authors thank the ERC (project no. BioTIME 250189) and the Royal Society for funding.
Collections
  • University of St Andrews Research
URL
http://rspb.royalsocietypublishing.org/content/281/1791/20141336/suppl/DC1
URI
http://hdl.handle.net/10023/5494

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter