Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorUlstrup, S.
dc.contributor.authorJohannsen, J.C.
dc.contributor.authorCilento, F.
dc.contributor.authorMiwa, J.A.
dc.contributor.authorCrepaldi, A.
dc.contributor.authorZacchigna, M.
dc.contributor.authorCacho, C.
dc.contributor.authorChapman, R.
dc.contributor.authorSpringate, E.
dc.contributor.authorMammadov, S.
dc.contributor.authorFromm, F.
dc.contributor.authorRaidel, C.
dc.contributor.authorSeyller, T.
dc.contributor.authorParmigiani, F.
dc.contributor.authorGrioni, M.
dc.contributor.authorKing, P.D.C.
dc.contributor.authorHofmann, P.
dc.date.accessioned2014-09-17T09:31:07Z
dc.date.available2014-09-17T09:31:07Z
dc.date.issued2014-06-25
dc.identifier.citationUlstrup , S , Johannsen , J C , Cilento , F , Miwa , J A , Crepaldi , A , Zacchigna , M , Cacho , C , Chapman , R , Springate , E , Mammadov , S , Fromm , F , Raidel , C , Seyller , T , Parmigiani , F , Grioni , M , King , P D C & Hofmann , P 2014 , ' Ultrafast dynamics of massive Dirac fermions in bilayer graphene ' , Physical Review Letters , vol. 112 , no. 25 , 257401 . https://doi.org/10.1103/PhysRevLett.112.257401en
dc.identifier.issn0031-9007
dc.identifier.otherPURE: 149102237
dc.identifier.otherPURE UUID: 5383d14a-94f4-488b-b76e-1c7fb2c8b232
dc.identifier.otherScopus: 84903536767
dc.identifier.otherWOS: 000338644200017
dc.identifier.urihttp://hdl.handle.net/10023/5434
dc.descriptionThe authors acknowledge financial support from the VILLUM foundation, The Danish Council for Independent Research/Technology and Production Sciences, the Lundbeck Foundation, the Swiss National Science Foundation (NSF), EPSRC, The Royal Society, and the Italian Ministry of University and Research (Grants No. FIRBRBAP045JF2 and No. FIRB-RBAP06AWK3).en
dc.description.abstractBilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.
dc.format.extent5
dc.language.isoeng
dc.relation.ispartofPhysical Review Lettersen
dc.rights© 2014 American Physical Societyen
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleUltrafast dynamics of massive Dirac fermions in bilayer grapheneen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Royal Societyen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1103/PhysRevLett.112.257401
dc.description.statusPeer revieweden
dc.identifier.urlhttp://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.257401#supplementalen
dc.identifier.grantnumberEP/I031014/1en
dc.identifier.grantnumberUF120096en


This item appears in the following Collection(s)

Show simple item record