Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMaschberger, T.
dc.contributor.authorBonnell, I.A.
dc.contributor.authorClarke, C.J.
dc.contributor.authorMoraux, E.
dc.date.accessioned2014-09-09T11:01:06Z
dc.date.available2014-09-09T11:01:06Z
dc.date.issued2014-03-21
dc.identifier.citationMaschberger , T , Bonnell , I A , Clarke , C J & Moraux , E 2014 , ' The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation ' , Monthly Notices of the Royal Astronomical Society , vol. 439 , no. 1 , pp. 234-246 . https://doi.org/10.1093/mnras/stt2403en
dc.identifier.issn0035-8711
dc.identifier.otherPURE: 146982822
dc.identifier.otherPURE UUID: 2cefff3b-b4e2-4dda-9356-a4ad1701c1a6
dc.identifier.otherScopus: 84894671311
dc.identifier.otherWOS: 000333297700035
dc.identifier.urihttps://hdl.handle.net/10023/5389
dc.descriptionTM acknowledges funding via the ANR 2010 JCJC 0501 1 ‘DESC’ (Dynamical Evolution of Stellar Clusters). IAB acknowledges funding from the European Research Council for the FP7 ERC advanced grant project ECOGAL.en
dc.description.abstractWe analyse a hydrodynamical simulation of star formation. Sink particles in the simulations which represent stars show episodic growth, which is presumably accretion from a core that can be regularly replenished in response to the fluctuating conditions in the local environment. The accretion rates follow ṁ α m2/3, as expected from accretion in a gas-dominated potential, but with substantial variations overlaid on this. The growth times follow an exponential distribution which is tapered at long times due to the finite length of the simulation. The initial collapse masses have an approximately lognormal distribution with already an onset of a power law at large masses. The sink particle mass function can be reproduced with a non-linear stochastic process, with fluctuating accretion rates ∝m2/3, a distribution of seed masses and a distribution of growth times. All three factors contribute equally to the form of the final sink mass function. We find that the upper power-law tail of the initial mass function is unrelated to Bondi-Hoyle accretion.
dc.format.extent13
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.rights© 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Societyen
dc.subjectAccretion, accretion discsen
dc.subjectStars: formationen
dc.subjectStars: luminosity function, mass functionen
dc.subjectOpen clusters and associations: generalen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleThe relation between accretion rates and the initial mass function in hydrodynamical simulations of star formationen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1093/mnras/stt2403
dc.description.statusPeer revieweden
dc.identifier.grantnumberen
dc.identifier.grantnumberST/J001651/1en


This item appears in the following Collection(s)

Show simple item record