St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of large acoustic datasets using machine learning and crowdsourcing : application to whale calls

Thumbnail
View/Open
Tyack_2014_JASA_Classification.pdf (1.327Mb)
Date
01/01/2014
Author
Shamir, L.
Yerby, C.
Simpson, R.
Von Benda-Beckmann, A.M.
Tyack, P.
Samarra, F.
Miller, P.
Wallin, J.
Keywords
QH301 Biology
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Vocal communication is a primary communication method of killer and pilot whales, and is used for transmitting a broad range of messages and information for short and long distance. The large variation in call types of these species makes it challenging to categorize them. In this study, sounds recorded by audio sensors carried by ten killer whales and eight pilot whales close to the coasts of Norway, Iceland, and the Bahamas were analyzed using computer methods and citizen scientists as part of the Whale FM project. Results show that the computer analysis automatically separated the killer whales into Icelandic and Norwegian whales, and the pilot whales were separated into Norwegian long-finned and Bahamas short-finned pilot whales, showing that at least some whales from these two locations have different acoustic repertoires that can be sensed by the computer analysis. The citizen science analysis was also able to separate the whales to locations by their sounds, but the separation was somewhat less accurate compared to the computer method.
Citation
Shamir , L , Yerby , C , Simpson , R , Von Benda-Beckmann , A M , Tyack , P , Samarra , F , Miller , P & Wallin , J 2014 , ' Classification of large acoustic datasets using machine learning and crowdsourcing : application to whale calls ' , Journal of the Acoustical Society of America , vol. 135 , no. 2 , pp. 953-962 . https://doi.org/10.1121/1.4861348
Publication
Journal of the Acoustical Society of America
Status
Peer reviewed
DOI
https://doi.org/10.1121/1.4861348
ISSN
0001-4966
Type
Journal article
Rights
Copyright 2014 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The following article appeared in Journal of the Acoustical Society of America and may be found at http://scitation.aip.org/content/asa/journal/jasa/135/2/10.1121/1.4861348.
Description
A.M.v.B.B. acknowledges support from the Sea Mammal Research Unit at the University of St. Andrews (Professor Ian Boyd) and Woods Hole Oceanographic Institution for the Whale FM project. P.T. received funding from the Marine Alliance for Science and Technology for Scotland (MASTS).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5353

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter