Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorColaux, Henri
dc.contributor.authorDawson, Daniel M
dc.contributor.authorAshbrook, Sharon E
dc.date.accessioned2014-09-04T10:01:01Z
dc.date.available2014-09-04T10:01:01Z
dc.date.issued2014-07-21
dc.identifier.citationColaux , H , Dawson , D M & Ashbrook , S E 2014 , ' Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR ' , Journal of Physical Chemistry A , vol. 118 , no. 31 , pp. 6018-25 . https://doi.org/10.1021/jp505752cen
dc.identifier.issn1089-5639
dc.identifier.otherPURE: 140046360
dc.identifier.otherPURE UUID: 05287ea9-9a3e-4671-a2f3-713214c6f351
dc.identifier.otherPubMed: 25047226
dc.identifier.otherScopus: 84905717542
dc.identifier.otherORCID: /0000-0002-4538-6782/work/56638931
dc.identifier.otherORCID: /0000-0002-8110-4535/work/34029121
dc.identifier.otherWOS: 000340222500032
dc.identifier.urihttps://hdl.handle.net/10023/5341
dc.descriptionWe thank EPSRC (EP/E041825/1 and EP/J501542/1) for support, for the award of a studentship to H.C. We also thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”).en
dc.description.abstractThe conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".
dc.format.extent8
dc.language.isoeng
dc.relation.ispartofJournal of Physical Chemistry Aen
dc.rights© 2014 American Chemical Society. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC-BY) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly citeden
dc.subjectQD Chemistryen
dc.subject.lccQDen
dc.titleEfficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMRen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1021/jp505752c
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/E041825/1en
dc.identifier.grantnumber614290 - EXONMRen
dc.identifier.grantnumberEP/J501542/1en
dc.identifier.grantnumberEP/J501542/1en


This item appears in the following Collection(s)

Show simple item record