St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatially resolved imaging of the two-component η Crv debris disk with Herschel

Thumbnail
View/Open
Greaves_2014_TAJ_Spatially.pdf (1.745Mb)
Date
01/04/2014
Author
Duchêne, G.
Arriaga, P.
Wyatt, M.
Kennedy, G.
Sibthorpe, B.
Lisse, C.
Holland, W.
Wisniewski, J.
Clampin, M.
Kalas, P.
Pinte, C.
Wilner, D.
Booth, M.
Horner, J.
Matthews, B.
Greaves, J.
Funder
Science & Technology Facilities Council
Grant ID
ST/J001651/1
Keywords
Circumstellar matter
Planetary systems
Stars: individual (η Crv)
QC Physics
QB Astronomy
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present far-infrared and submillimeter images of the η Crv debris disk system obtained with Herschel and SCUBA-2, as well as Hubble Space Telescope visible and near-infrared coronagraphic images. In the 70 μm Herschel image, we clearly separate the thermal emission from the warm and cold belts in the system, find no evidence for a putative dust population located between them, and precisely determine the geometry of the outer belt. We also find marginal evidence for azimuthal asymmetries and a global offset of the outer debris ring relative to the central star. Finally, we place stringent upper limits on the scattered light surface brightness of the outer ring. Using radiative transfer modeling, we find that it is impossible to account for all observed properties of the system under the assumption that both rings contain dust populations with the same properties. While the outer belt is in reasonable agreement with the expectations of steady-state collisional cascade models, albeit with a minimum grain size that is four times larger than the blow-out size, the inner belt appears to contain copious amounts of small dust grains, possibly below the blow-out size. This suggests that the inner belt cannot result from a simple transport of grains from the outer belt and rather supports a more violent phenomenon as its origin. We also find that the emission from the inner belt has not declined over three decades, a much longer timescale than its dynamical timescale, which indicates that the belt is efficiently replenished.
Citation
Duchêne , G , Arriaga , P , Wyatt , M , Kennedy , G , Sibthorpe , B , Lisse , C , Holland , W , Wisniewski , J , Clampin , M , Kalas , P , Pinte , C , Wilner , D , Booth , M , Horner , J , Matthews , B & Greaves , J 2014 , ' Spatially resolved imaging of the two-component η Crv debris disk with Herschel ' , Astrophysical Journal , vol. 784 , no. 2 . https://doi.org/10.1088/0004-637X/784/2/148
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.1088/0004-637X/784/2/148
ISSN
0004-637X
Type
Journal article
Rights
© 2014. The American Astronomical Society. All rights reserved.
Description
This work was supported in part by NASA through a contract (No. 1353184, PI: H. M. Butner) issued by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. We acknowledge the Service Commun de Calcul Intensif de l'Observatoire de Grenoble (SCCI) for computations on the super-computer funded by ANR (contracts ANR-07-BLAN-0221, ANR-2010-JCJC-0504-01 and ANR-2010-JCJC-0501-01) and the European Commission's 7th Framework Program (contract PERG06-GA-2009-256513). M.W. and G.K. are grateful for support from the European Union through ERC grant number 279973. C.L. acknowledges support from grants NASA NNX11AB21G and NSF AAG-NNX09AU31G in working on this project. P.K. acknowledges support from NASA NNX11AD21G, NSF AST-0909188, and JPL/NASA award NMO711043. M.B. acknowledges support from an NSERC Discovery Accelerator Supplement.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5304

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter