St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

[OI] disk emission in the Taurus star-forming region

Thumbnail
View/Open
Woitke_2014_A_A_0IDisk.pdf (841.6Kb)
Date
01/06/2014
Author
Aresu, G.
Kamp, I.
Meijerink, R.
Spaans, M.
Vicente, S.
Podio, L.
Woitke, P.
Menard, F.
Thi, W.-F.
Güdel, M.
Liebhart, A.
Keywords
Protoplanetary disks
QB Astronomy
Metadata
Show full item record
Abstract
Context. The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial for providing a reliable disk structure for interpreting dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. Aims. We aim to study the thermal properties of the disk in the oxygen line emission region and to investigate the relative importance of X-ray (1-120 Å) and far-UV radiation (FUV, 912-2070 Å) for the heating balance there. Methods. We use [OI] 63 μm line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star-forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel open time key program GAS in Protoplanetary diskS (GASPS). Results. Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [O I] and the sum LX + LFUV. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. Conclusions. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This contrasts with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict and/or that other disk structure aspects that were left unchanged in our models are important. Disk models should include flat geometries, varying parameters such as outer radius, dust settling, and the dust-to-gas mass ratio, which might play an equally important role for the [OI] emission. To improve statistics and draw more robust conclusions on the thermal processes that dominate the atmosphere of protoplanetary disks surrounding T Tauri stars, more LFUV + LX measurements are needed. High spatial and spectra resolution data is required to disentangle the fraction of [O I] flux emitted by the disk in outflow sources.
Citation
Aresu , G , Kamp , I , Meijerink , R , Spaans , M , Vicente , S , Podio , L , Woitke , P , Menard , F , Thi , W-F , Güdel , M & Liebhart , A 2014 , ' [OI] disk emission in the Taurus star-forming region ' , Astronomy & Astrophysics , vol. 566 , A14 . https://doi.org/10.1051/0004-6361/201322455
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201322455
ISSN
0004-6361
Type
Journal article
Rights
© ESO, 2014
Description
W.F.T., P.W., F.M., M.G., and I.K. acknowledge funding from the EU FP7-2011 under Grant Agreement Nr. 284405. L.P. acknowledges funding from the FP7 Intra-European Marie Curie Fellowship (PIEF-GA-2009-253896).
Collections
  • University of St Andrews Research
URL
http://www.scopus.com/inward/record.url?eid=2-s2.0-84901794721&partnerID=8YFLogxK
URI
http://hdl.handle.net/10023/5263

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter