Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHiggins, K.D.B.
dc.contributor.authorBenjamin, S.C.
dc.contributor.authorStace, T.M.
dc.contributor.authorMilburn, G.J.
dc.contributor.authorLovett, Brendon William
dc.contributor.authorGauger, E.M.
dc.date.accessioned2014-08-22T13:31:01Z
dc.date.available2014-08-22T13:31:01Z
dc.date.issued2014-08-22
dc.identifier.citationHiggins , K D B , Benjamin , S C , Stace , T M , Milburn , G J , Lovett , B W & Gauger , E M 2014 , ' Superabsorption of light via quantum engineering ' , Nature Communications , vol. 5 , 4705 , pp. 1-7 . https://doi.org/10.1038/ncomms5705en
dc.identifier.issn2041-1723
dc.identifier.otherPURE: 142403181
dc.identifier.otherPURE UUID: 70c29fe5-cb77-492d-b2ac-3907d9bd3850
dc.identifier.otherScopus: 84907343780
dc.identifier.otherORCID: /0000-0001-5142-9585/work/47136554
dc.identifier.otherWOS: 000341078900003
dc.identifier.urihttps://hdl.handle.net/10023/5214
dc.descriptionThis work was supported by the EPSRC platform Grant ‘Molecular Quantum Devices’ (EP/J015067/1), the Leverhulme Trust, the National Research Foundation and the Ministry of Education, Singapore, and ARC grant CE110001013. B.W.L. thanks the Royal Society for a University Research Fellowship.en
dc.description.abstractAlmost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N2. Structures that superradiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that this restriction can be overcome by combining several well-established quantum control techniques. Our analytical and numerical calculations show that superabsorption can then be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state through transition rate engineering. This opens the prospect of a new class of quantum nanotechnology with potential applications including photon detection and light-based power transmission. An array of quantum dots or a molecular ring structure could provide a suitable platform for an experimental demonstration.
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.rightsCopyright 2014 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.subjectQC Physicsen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQCen
dc.titleSuperabsorption of light via quantum engineeringen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Societyen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1038/ncomms5705
dc.description.statusPeer revieweden
dc.identifier.urlhttps://www.nature.com/articles/ncomms5705#Sec14en
dc.identifier.grantnumberUF100020en


This item appears in the following Collection(s)

Show simple item record