St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D PiC code investigations of Auroral Kilometric Radiation mechanisms

Thumbnail
View/Open
gillespiejphysicsconfseries012051.pdf (791.1Kb)
Date
2014
Author
Gillespie, K. M.
McConville, S. L.
Speirs, D. C.
Ronald, K.
Phelps, A. D. R.
Bingham, R.
Cross, A. W.
Robertson, C. W.
Whyte, C. G.
He, W.
Vorgul, I.
Cairns, R. A.
Kellett, B. J.
Keywords
Cyclotron maser radiation
Plasmas
Distributions
Driven
Space
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Efficient (similar to 1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.
Citation
Gillespie , K M , McConville , S L , Speirs , D C , Ronald , K , Phelps , A D R , Bingham , R , Cross , A W , Robertson , C W , Whyte , C G , He , W , Vorgul , I , Cairns , R A & Kellett , B J 2014 , 3D PiC code investigations of Auroral Kilometric Radiation mechanisms . in 15th International Congress on Plasma Physics (ICPP2010) & 13th Latin American Workshop on Plasma Physics (LAWPP2010) . Journal of Physics Conference Series , vol. 511 , IOP Publishing Ltd. , Bristol , 15th International Congress on Plasma Physics (ICPP) / 13th Latin American Workshop on Plasma Physics (LAWPP) , Chile , 8/08/10 . https://doi.org/10.1088/1742-6596/511/1/012051
 
conference
 
Publication
15th International Congress on Plasma Physics (ICPP2010) & 13th Latin American Workshop on Plasma Physics (LAWPP2010)
DOI
https://doi.org/10.1088/1742-6596/511/1/012051
ISSN
1742-6588
Type
Conference item
Rights
© 2014 The Authors. Published under licence by IOP Publishing Ltd. The following article appeared in K M Gillespie et al 2014 J. Phys.: Conf. Ser. 511 012051 and may be found at http://iopscience.iop.org/1742-6596/511/1/012051. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5184

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter