Files in this item
Using hidden Markov models to deal with availability bias on line transect surveys
Item metadata
dc.contributor.author | Borchers, David Louis | |
dc.contributor.author | Zucchini, Walter | |
dc.contributor.author | Heide-Jørgensen, M.P. | |
dc.contributor.author | Cañadas, A. | |
dc.contributor.author | Langrock, Roland | |
dc.date.accessioned | 2014-07-12T23:01:41Z | |
dc.date.available | 2014-07-12T23:01:41Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Borchers , D L , Zucchini , W , Heide-Jørgensen , M P , Cañadas , A & Langrock , R 2013 , ' Using hidden Markov models to deal with availability bias on line transect surveys ' , Biometrics , vol. 69 , no. 3 , pp. 703-713 . https://doi.org/10.1111/biom.12049 | en |
dc.identifier.issn | 0006-341X | |
dc.identifier.other | PURE: 26425234 | |
dc.identifier.other | PURE UUID: d40d7c28-c528-4e29-9a67-454d85d021ee | |
dc.identifier.other | Scopus: 84901231358 | |
dc.identifier.other | ORCID: /0000-0002-3944-0754/work/72842444 | |
dc.identifier.uri | http://hdl.handle.net/10023/5017 | |
dc.description | This work was supported by EPSRC grant EP/I000917/1 | en |
dc.description.abstract | We develop estimators for line transect surveys of animals that are stochastically unavailable for detection while within detection range. The detection process is formulated as a hidden Markov model with a binary state-dependent observation model that depends on both perpendicular and forward distances. This provides a parametric method of dealing with availability bias when estimates of availability process parameters are available even if series of availability events themselves are not. We apply the estimators to an aerial and a shipboard survey of whales, and investigate their properties by simulation. They are shown to be more general and more flexible than existing estimators based on parametric models of the availability process. We also find that methods using availability correction factors can be very biased when surveys are not close to being instantaneous, as can estimators that assume temporal independence in availability when there is temporal dependence. | |
dc.format.extent | 11 | |
dc.language.iso | eng | |
dc.relation.ispartof | Biometrics | en |
dc.rights | © 2013, The International Biometric Society. The final, published version of this article is availble from http://onlinelibrary.wiley.com/doi/10.1111/biom.12049/full | en |
dc.subject | Availability bias | en |
dc.subject | Detection hazard | en |
dc.subject | Hidden Markov model | en |
dc.subject | Line transect | en |
dc.subject | Wildlife survey | en |
dc.subject | HA Statistics | en |
dc.subject | QH301 Biology | en |
dc.subject.lcc | HA | en |
dc.subject.lcc | QH301 | en |
dc.title | Using hidden Markov models to deal with availability bias on line transect surveys | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Scottish Oceans Institute | en |
dc.contributor.institution | University of St Andrews. Centre for Research into Ecological & Environmental Modelling | en |
dc.contributor.institution | University of St Andrews. Marine Alliance for Science & Technology Scotland | en |
dc.contributor.institution | University of St Andrews. Statistics | en |
dc.identifier.doi | https://doi.org/10.1111/biom.12049 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2014-07-13 | |
dc.identifier.grantnumber | EP/I000917/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.