Predicting the vulnerability of great apes to disease : the role of superspreaders and their potential vaccination
Date
27/12/2013Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Disease is a major concern for the conservation of great apes, and one that is likely to become increasingly relevant as deforestation and the rise of ecotourism bring humans and apes into ever closer proximity. Consequently, it is imperative that preventative measures are explored to ensure that future epidemics do not wipe out the remaining populations of these animals. In this paper, social network analysis was used to investigate vulnerability to disease in a population of wild orang-utans and a community of wild chimpanzees. Potential 'superspreaders' of disease - individuals with disproportionately central positions in the community or population - were identified, and the efficacy of vaccinating these individuals assessed using simulations. Three resident female orang-utans were identified as potential superspreaders, and females and unflanged males were predicted to be more influential in disease spread than flanged males. By contrast, no superspreaders were identified in the chimpanzee network, although males were significantly more central than females. In both species, simulating the vaccination of the most central individuals in the network caused a greater reduction in potential disease pathways than removing random individuals, but this effect was considerably more pronounced for orang-utans. This suggests that targeted vaccinations would have a greater impact on reducing disease spread among orang-utans than chimpanzees. Overall, these results have important implications for orang-utan and chimpanzee conservation and highlight the role that certain individuals may play in the spread of disease and its prevention by vaccination.
Citation
Carne , C , Semple , S , Morrogh-Bernard , H , Zuberbuehler , K & Lehmann , J 2013 , ' Predicting the vulnerability of great apes to disease : the role of superspreaders and their potential vaccination ' , PLoS One , vol. 8 , no. 12 , e84642 . https://doi.org/10.1371/journal.pone.0084642
Publication
PLoS One
Status
Peer reviewed
ISSN
1932-6203Type
Journal article
Rights
Copyright: © 2013 Carne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/4.0/
Description
Charlotte Carne was funded by a scholarship from the University of Roehampton (http://www.roehampton.ac.uk/home/). The Royal Zoological Society of Scotland (http://www.rzss.org.uk/) provided core funding for the Budongo Conservation Field Station. The orang-utan field research was funded by the Wildlife Conservation Society (WCS: http://www.wcs.org/), the US Fish and Wildlife Service Great Ape Conservation Fund (http://www.fws.gov/international/wildlife-without-borders/great-ape-conservation-fund.html), Orang-utan Tropical Peatland Project (OuTrop: http://www.outrop.com/), Primate Conservation Inc. (http://www.primate.org/), and the L.S.B. Leakey Foundation (http://leakeyfoundation.org/).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.