Unbinding of giant vortices in states of competing order
Date
10/10/2012Grant ID
EP/H049584/1
EP/I031014/1
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We consider a two-dimensional system with two order parameters, one with O(2) symmetry and one with O(M), near a point in parameter space where they couple to become a single O(2+M) order. While the O(2) sector supports vortex excitations, these vortices must somehow disappear as the high symmetry point is approached. We develop a variational argument which shows that the size of the vortex cores diverges as 1/root Delta and the Berezinskii-Kosterlitz-Thouless transition temperature of the O(2) order vanishes as 1/1n(1/Delta), where Delta denotes the distance from the high-symmetry point. Our physical picture is confirmed by a renormalization group analysis which gives further logarithmic corrections, and demonstrates full symmetry restoration within the cores.
Citation
Fellows , J M , Carr , S T , Hooley , C A & Schmalian , J 2012 , ' Unbinding of giant vortices in states of competing order ' , Physical Review Letters , vol. 109 , no. 15 , 155703 . https://doi.org/10.1103/PhysRevLett.109.155703
Publication
Physical Review Letters
Status
Peer reviewed
ISSN
0031-9007Type
Journal article
Rights
© 2012 American Physical Society
Description
Funding: EPSRC (UK) via Grants No. EP/I031014/1 and No. EP/H049584/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.