St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic photoinhibition exhibited by red coralline algae in the red sea

Thumbnail
View/Open
Burdett_et_al_2014.pdf (566.9Kb)
Date
20/05/2014
Author
Burdett, Heidi
Keddie, Victoria
MacArthur, Nicola
McDowall, Laurin
McLeish, Jennifer
Spielvogel, Eva
Hatton, Angela
Kamenos, Nicholas
Keywords
Dimethylsulphoniopropionate (DMSP)
PAM fluorometry
Maerl
Rhodolith
Coral reef
Crustose coralline algae (CCA)
Photosynthesis
Photosynthetic pigment
QH301 Biology
Metadata
Show full item record
Abstract
Background: Red coralline algae are critical components of tropical reef systems, and their success and development is, at least in part, dependent on photosynthesis. However, natural variability in the photosynthetic characteristics of red coralline algae is poorly understood. This study investigated diurnal variability in encrusting Porolithon sp. and free-living Lithophyllum kotschyanum. Measured parameters included: photosynthetic characteristics, pigment composition, thallus reflectance and intracellular concentrations of dimethylsulphoniopropionate (DMSP), an algal antioxidant that is derived from methionine, an indirect product of photosynthesis. L. kotschyanum thalli were characterised by a bleached topside and a pigmented underside. Results: Minimum saturation intensity and intracellular DMSP concentrations in Porolithon sp. were characterised by significant diurnal patterns in response to the high-light regime. A smaller diurnal pattern in minimum saturation intensity in the topside of L. kotschyanum was also evident. The overall reflectance of the topside of L. kotschyanum also exhibited a diurnal pattern, becoming increasingly reflective with increasing ambient irradiance. The underside of L. kotschyanum, which is shaded from ambient light exposure, exhibited a much smaller diurnal variability. Conclusions: This study highlights a number of dynamic photoinhibition strategies adopted by coralline algae, enabling them to tolerate, rather than be inhibited by, the naturally high irradiance of tropical reef systems; a factor that may become more important in the future under global change projections. In this context, this research has significant implications for tropical reef management planning and conservation monitoring, which, if natural variability is not taken into account, may become flawed. The information provided by this research may be used to inform future investigations into the contribution of coralline algae to reef accretion, ecosystem service provision and palaeoenvironmental reconstruction.
Citation
Burdett , H , Keddie , V , MacArthur , N , McDowall , L , McLeish , J , Spielvogel , E , Hatton , A & Kamenos , N 2014 , ' Dynamic photoinhibition exhibited by red coralline algae in the red sea ' , BMC Plant Biology , vol. 14 , 139 . https://doi.org/10.1186/1471-2229-14-139
Publication
BMC Plant Biology
Status
Peer reviewed
DOI
https://doi.org/10.1186/1471-2229-14-139
ISSN
1471-2229
Type
Journal article
Rights
© Burdett et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Description
This research was funded by a Natural Environment Research Council Studentship (NE/H525303/1) and a Marine Alliance for Science and Technology for Scotland (MASTS) Fellowship to HLB and a Royal Society of Edinburgh/Scottish Government Fellowship (RES 48704/1) to NAK.
Collections
  • University of St Andrews Research
URL
http://www.biomedcentral.com/1471-2229/14/139
URI
http://hdl.handle.net/10023/4841

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter