Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorClarke, Matt
dc.contributor.authorDiaz Valenzuela, Maria Belen
dc.coverage.spatial158en
dc.date.accessioned2008-05-15T08:53:26Z
dc.date.available2008-05-15T08:53:26Z
dc.date.issued2007-11
dc.identifieruk.bl.ethos.552058
dc.identifier.urihttps://hdl.handle.net/10023/479
dc.description.abstractA review on catalytic asymmetric hydrogenation of C=O double bonds is presented in the first chapter. Noyori’s pioneering research on ruthenium complexes containing both phosphine and diamine ligands using [i superscript]PrOH and [t superscript]BuOK is described, this system gave impressive highly chemeo-selectivity for C=O bonds and extremely high enantioselectivity for a range of acetophenone derivatives. Numerous groups have been inspired by Noyori’s catalyst of the type RuCl₂(chiraldiphosphine)(chiraldiamine), these systems often give excellent results for acetophenone. However, these catalysts have limitations, they are found to be either inactive or unselective for hydrogenation of tetralones, dialkylketones, bulky ketones, some heterocyclic ketones and imines prove difficult using this system. In this project, we are searching for a new catalyst for asymmetric hydrogenation of ketones that solve the difficult challenges faced when using Noyori’s [Ru(diphosphine)(diamine)Cl₂] catalysts system. Departing from Noyori’s type catalyst in the second chapter is described our effort to synthesise new diamines derived from amino acids and the synthesis of [Ru(diamine)(diphosphine)Cl₂] complexes. These catalysts are tested in asymmetric hydrgenation of ketones. In the next two chapters the finding of a new tridentate P^N^NH₂ type ligand is reported and the novel ruthenium complex containing the tridentate ligand has been synthesised and characterised by X-ray crystallography and been found to be active in the hydrogenation of a range of C=O and C=N double bonds, including the enantioselective hydrogenation of normally unreactive bulky ketones with up to 93 % ee. The last chapter explains the transfer hydrogenation activity for this new catalyst, involving a novel method of transfer hydrogenation reaction under microwave irradiation.en
dc.format.extent2675 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectCatalytic asymmetric hydrogenationen
dc.titleNew ruthenium catalysts for asymmetric hydrogenationen
dc.typeThesisen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.publisher.institutionThe University of St Andrewsen


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported