Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBailey, R.L.
dc.contributor.authorHelling, Christiane
dc.contributor.authorHodosán, G.
dc.contributor.authorBilger, C.
dc.contributor.authorStark, C.R.
dc.date.accessioned2014-05-09T10:01:03Z
dc.date.available2014-05-09T10:01:03Z
dc.date.issued2014-03-20
dc.identifier.citationBailey , R L , Helling , C , Hodosán , G , Bilger , C & Stark , C R 2014 , ' Ionization in atmospheres of brown dwarfs and extrasolar planets VI : properties of large-scale discharge events ' , Astrophysical Journal , vol. 784 , no. 1 , 43 . https://doi.org/10.1088/0004-637X/784/1/43en
dc.identifier.issn0004-637X
dc.identifier.otherPURE: 116990635
dc.identifier.otherPURE UUID: c8c85617-d5f5-4822-bb47-25d811279dab
dc.identifier.otherScopus: 84896801150
dc.identifier.otherWOS: 000335457000043
dc.identifier.urihttps://hdl.handle.net/10023/4746
dc.descriptionFunding European Community FP7 ERC starting grant. Physics Trust of the University of St Andrews.en
dc.description.abstractMineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g., by lightning), which significantly influences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionization state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to DRIFT-PHOENIX model atmosphere results to model the discharge's propagation downward (as lightning) and upward (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g., by increase of temperature or electron number) is larger in a brown dwarf atmosphere (10^8-10^10 m3) than in a giant gas planet (10^4-10^6 m3). Our results suggest that the total dissipated energy in one event is <10^12 J for all models of initial solar metallicity. First attempts to show the influence of lightning on the local gas phase indicate an increase of small carbohydrate molecules like CH and CH2 at the expense of CO and CH4. Dust-forming molecules are destroyed and the cloud particle properties are frozen in unless enough time is available for complete evaporation. We summarize instruments potentially suitable to observe lightning on extrasolar objects.
dc.format.extent19
dc.language.isoeng
dc.relation.ispartofAstrophysical Journalen
dc.rights© 2014. The American Astronomical Society. All rights reserved.en
dc.subjectAstrobiologyen
dc.subjectBrown dwarfsen
dc.subjectPlanets and satellites: atmospheresen
dc.subjectPlasmasen
dc.subjectRadiation mechanismsen
dc.subjectNon-thermalen
dc.subjectStars: activityen
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleIonization in atmospheres of brown dwarfs and extrasolar planets VI : properties of large-scale discharge eventsen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. University of St Andrewsen
dc.identifier.doihttps://doi.org/10.1088/0004-637X/784/1/43
dc.description.statusPeer revieweden
dc.identifier.grantnumberST/K001515/1en
dc.identifier.grantnumberST/J001651/1en


This item appears in the following Collection(s)

Show simple item record