Show simple item record

Files in this item


Item metadata

dc.contributor.authorMeyer, Karen Alison
dc.contributor.authorSabol, Juraj
dc.contributor.authorMackay, Duncan Hendry
dc.contributor.authorvan Ballegooijen, Aad
dc.identifier.citationMeyer , K A , Sabol , J , Mackay , D H & van Ballegooijen , A 2013 , ' The storage and dissipation of magnetic energy in the quiet sun corona determined from SDO/HMI magnetograms ' , Astrophysical Journal Letters , vol. 770 , no. 2 , L18 .
dc.identifier.otherPURE: 102599627
dc.identifier.otherPURE UUID: f9fec724-871d-48bd-993a-cf1a323a7b30
dc.identifier.otherScopus: 84879093058
dc.identifier.otherORCID: /0000-0001-6065-8531/work/58055461
dc.description.abstractIn recent years, higher cadence, higher resolution observations have revealed the quiet-Sun photosphere to be complex and rapidly evolving. Since magnetic fields anchored in the photosphere extend up into the solar corona, it is expected that the small-scale coronal magnetic field exhibits similar complexity. For the first time, the quiet-Sun coronal magnetic field is continuously evolved through a series of non-potential, quasi-static equilibria, deduced from magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, where the photospheric boundary condition which drives the coronal evolution exactly reproduces the observed magnetograms. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. We find that the free magnetic energy built up and stored within the field is sufficient to explain small-scale, impulsive events such as nanoflares. On comparing with coronal images of the same region, the energy storage and dissipation visually reproduces many of the observed features. The results indicate that the complex small-scale magnetic evolution of a large number of magnetic features is a key element in explaining the nature of the solar corona.
dc.relation.ispartofAstrophysical Journal Lettersen
dc.rights© 2013. The American Astronomical Society. All rights reserved.en
dc.subjectSun: coronaen
dc.subjectSun: photosphereen
dc.subjectSun: surface magnetismen
dc.subjectQC Physicsen
dc.titleThe storage and dissipation of magnetic energy in the quiet sun corona determined from SDO/HMI magnetogramsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.Applied Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record