St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The consequences of reconfiguring the ambisense S genome segment of Rift Valley Fever Virus on viral replication in mammalian and mosquito cells and for genome packaging

Thumbnail
View/Open
brennan2014ppathogense1003922.pdf (7.770Mb)
Date
13/02/2014
Author
Brennan, Benjamin
Welch, Stephen R.
Elliott, Richard M.
Funder
BBSRC
The Wellcome Trust
European Commission
The Wellcome Trust
Medical Research Council
Grant ID
BB/G004277/1
099220/Z/12/Z
211757
079810/Z/06/Z
G0800161
Keywords
Dependent protein-kinase
Bunyamwera virus
NSS protein
Infected-cells
Noncoding regions
Untranslated regions
RNA interference
Coding strategy
Punta-toro
Expression
QH301 Biology
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N) protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome. Author Summary Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus found primarily in sub-Saharan Africa that can infect both domestic animals and humans. RVFV has a tripartite RNA genome that encodes seven proteins. The smallest (S) segment has an unusual ambisense coding strategy whereby two genes (for the nucleocapsid N and nonstructural NSs proteins) are encoded in opposite orientations on the genomic RNA, and are translated from specific subgenomic mRNAs. N is the major structural protein of the virus while NSs is the major virulence factor. To investigate the biological significance of this coding arrangement, we used reverse genetics to create a recombinant virus in which the N and NSs coding sequences were swapped on the S segment. The recombinant virus grew less well in tissue culture cells compared to the parental virus, and rather than maintain persistence in insect cells, infection resulted in their death. In addition, packaging of the modified S genome segment into new virus particles was altered. We also showed that a foreign protein could be expressed to high levels when cloned in place of the NSs gene in the recombinant virus. These studies have implications for vaccine development and vector control strategies.
Citation
Brennan , B , Welch , S R & Elliott , R M 2014 , ' The consequences of reconfiguring the ambisense S genome segment of Rift Valley Fever Virus on viral replication in mammalian and mosquito cells and for genome packaging ' , PLoS Pathogens , vol. 10 , no. 2 , e1003922 . https://doi.org/10.1371/journal.ppat.1003922
Publication
PLoS Pathogens
Status
Peer reviewed
DOI
https://doi.org/10.1371/journal.ppat.1003922
ISSN
1553-7374
Type
Journal article
Rights
© 2014 Brennan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/4730

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter