Show simple item record

Files in this item


Item metadata

dc.contributor.authorRoth, Wieslaw J.
dc.contributor.authorNachtigall, Petr
dc.contributor.authorMorris, Russell Edward
dc.contributor.authorWheatley, Paul Stewart
dc.contributor.authorSeymour, Valerie Ruth
dc.contributor.authorAshbrook, Sharon Elizabeth Marie
dc.contributor.authorChlubna, Pavla
dc.contributor.authorGrajciar, Lukas
dc.contributor.authorPolozij, Miroslav
dc.contributor.authorZukal, Arnost
dc.contributor.authorShvets, Oleksiy
dc.contributor.authorCejka, Jiri
dc.identifier.citationRoth , W J , Nachtigall , P , Morris , R E , Wheatley , P S , Seymour , V R , Ashbrook , S E M , Chlubna , P , Grajciar , L , Polozij , M , Zukal , A , Shvets , O & Cejka , J 2013 , ' A family of zeolites with controlled pore size prepared using a top-down method ' Nature Chemistry , vol. 5 , no. 7 , pp. 628-633 .
dc.identifier.otherPURE: 71668313
dc.identifier.otherPURE UUID: 623b10af-fd33-4890-84e5-8d31973b9024
dc.identifier.otherWOS: 000321042600017
dc.identifier.otherScopus: 84879363017
dc.identifier.otherORCID: /0000-0002-4538-6782/work/56638954
dc.description.abstractThe properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.
dc.relation.ispartofNature Chemistryen
dc.rightsCopyright 2013, the authors. This is the accepted version manuscript.en
dc.subjectStructure-directing agenten
dc.subjectInterlayer expansionen
dc.titleA family of zeolites with controlled pore size prepared using a top-down methoden
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews.School of Chemistryen
dc.contributor.institutionUniversity of St Andrews.EaSTCHEMen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record