St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules

Thumbnail
View/Open
ci4005805.pdf (1.509Mb)
Date
24/02/2014
Author
McDonagh, James
Nath, Neetika
De Ferrari, Luna
van Mourik, Tanja
Mitchell, John B. O.
Keywords
Cheminformatics
Chemical theory
Druglike molecules
Quantitative structure–property relationship (QSPR) models
machine learning models
Chemistry Development Kit (CDK) descriptors
QD Chemistry
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ~1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units.
Citation
McDonagh , J , Nath , N , De Ferrari , L , van Mourik , T & Mitchell , J B O 2014 , ' Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules ' , Journal of Chemical Information and Modeling , vol. 54 , no. 3 , pp. 844-856 . https://doi.org/10.1021/ci4005805
Publication
Journal of Chemical Information and Modeling
Status
Peer reviewed
DOI
https://doi.org/10.1021/ci4005805
ISSN
1549-9596
Type
Journal article
Rights
Copyright © 2014 American Chemical Society. This is an early online article made open access through ACS AuthorChoice and is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/4518

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter