St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laboratory astrophysics : investigation of planetary and astrophysical maser emission

Thumbnail
View/Open
LabAstrophysics.pdf (1.329Mb)
Date
2013
Author
Speirs, David
Cairns, R Alan
Kellett, Barry
Vorgul, Irena
McConville, Sandra
Cross, Adrian
Phelps, Alan
Ronald, Kevin
Bingham, Robert
Funder
EPSRC
EPSRC
Grant ID
EP/G042500/1
EP/D037093/1
Keywords
Cyclotron maser emission
Auroral kilometric radiation
UV Ceti
CU Virginus
Blazer jets
Astrophysical shocks
Plasma instabilites
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
This paper describes a model for cyclotron maser emission applicable to planetary auroral radio emission, the stars UV Ceti and CU Virginus, blazar jets and astrophysical shocks. These emissions may be attributed to energetic electrons moving into convergent magnetic fields that are typically found in association with dipole like planetary magnetospheres or shocks. It is found that magnetic compression leads to the formation of a velocity distribution having a horseshoe shape as a result of conservation of the electron magnetic moment. Under certain plasma conditions where the local electron plasma frequency ωpe is much less than the cyclotron frequency ωce the distribution is found to be unstable to maser type radiation emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution produces cyclotron emission at a frequency just below the local electron cyclotron frequency, with polarisation close to X-mode and propagating nearly perpendicularly to the electron beam motion. We discuss recent developments in the theory and simulation of the instability including addressing radiation escape problems, and relate these to the laboratory, space, and astrophysical observations. The experiments showed strong narrow band EM emissions at frequencies just below the cold-plasma cyclotron frequency as predicted by the theory. Measurements of the conversion efficiency, mode and spectral content were in close agreement with the predictions of numerical simulations undertaken using a particle-in-cell code and also with satellite observations confirming the horseshoe maser as an important emission mechanism in geophysical/astrophysical plasmas. In each case we address how the radiation can escape the plasma without suffering strong absorption at the second harmonic layer.
Citation
Speirs , D , Cairns , R A , Kellett , B , Vorgul , I , McConville , S , Cross , A , Phelps , A , Ronald , K & Bingham , R 2013 , ' Laboratory astrophysics : investigation of planetary and astrophysical maser emission ' , Space Science Reviews , vol. 178 , no. 2-4 , pp. 695-713 . https://doi.org/10.1007/s11214-013-9963-z
Publication
Space Science Reviews
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11214-013-9963-z
ISSN
0038-6308
Type
Journal article
Rights
© 2013, Springer Science+Business Media. This is the author created, accepted version manuscript. The final publication is available at http://link.springer.com/article/10.1007%2Fs11214-013-9963-z
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/4494

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter