Files in this item
Structure and properties of some triangular lattice materials
Item metadata
dc.contributor.advisor | Lightfoot, Philip | |
dc.contributor.author | Downie, Lewis James | |
dc.coverage.spatial | 200 | en_US |
dc.date.accessioned | 2014-01-28T09:44:21Z | |
dc.date.available | 2014-01-28T09:44:21Z | |
dc.date.issued | 2014-06-25 | |
dc.identifier | uk.bl.ethos.588947 | |
dc.identifier.uri | http://hdl.handle.net/10023/4423 | |
dc.description.abstract | This thesis is concerned with the study of two families of materials which contain magnetically frustrated triangular lattices. Each material is concerned with a different use; the first, analogues of YMnO₃, is from a family of materials called multiferroics, the second, A₂MCu₃F₁₂ (where A = Rb¹⁺, Cs¹⁺, M = Zr⁴⁺, Sn⁴⁺, Ti⁴⁺, Hf⁴⁺), are materials which are of interest due to their potentially unusual magnetic properties deriving from a highly frustrated Cu²⁺-based kagome lattice. YFeO₃, YbFeO₃ and InFeO₃ have been synthesised as their hexagonal polymorphs. YFeO₃ and YbFeO₃ have been studied in depth by neutron powder diffraction, A.C. impedance spectroscopy, Mössbauer spectroscopy and magnetometry. It was found that YFeO₃ and YbFeO₃ are structurally similar to hexagonal YMnO₃ but there is evidence for a subtle phase separation in each case. Low temperature magnetic properties are also reported, and subtle correlations between the structural, electrical and magnetic properties of these materials have been found. InFeO₃ was found to adopt a higher symmetry and is structurally similar to the high temperature phase of YMnO₃. TbInO₃ and DyInO₃ have also been synthesised and studied at various temperatures. The phase behaviour of TbInO₃ was analysed in detail using neutron powder diffraction and internal structural changes versus temperature were mapped out – there is also evidence for a subtle isosymmetric phase transition. Neither DyInO₃ nor TbInO₃ show long-range magnetic order between 2 and 300 K, or any signs of ferroelectricity at room temperature. The new compounds Cs₂TiCu₃F₁₂ and Rb₂TiCu₃F₁₂ have both been synthesised and shown to be novel kagome lattice based materials. The former shows a transition from rhombohedral to monoclinic symmetry in the powder form and from rhombohedral to a larger rhombohedral unit cell in the single crystal – a particle size based transition pathway is suggested. For Rb₂TiCu₃F₁₂ a complex triclinic unit cell is found, which distorts with lowering temperature. Both materials show magnetic transitions with lowering temperature. The solid solution Cs₂₋ₓRbₓSnCu₃F₁₂ (x = 0, 0.5, 1.0, 1.5, 2.0) was synthesised and investigated crystallographically, demonstrating a range of behaviours. Rb₂SnCu₃F₁₂ displays a rare re-entrant structural phase transition. In contrast, Cs₀.₅Rb₁.₅SnCu₃F₁₂ shows only the first transition found in the Rb⁺ end member. CsRbSnCu₃F₁₂ adopts a lower symmetry at both room temperature and below. Cs₁.₅Rb₀.₅SnCu₃F₁₂ and Cs₂SnCu₃F₁₂ show a rhombohedral - monoclinic transition, which is similar to that found in Cs₂TiCu₃F₁₂. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of St Andrews | |
dc.subject | Solid state chemistry | en_US |
dc.subject | Fluorides | en_US |
dc.subject | Oxides | en_US |
dc.subject | Crystallography | en_US |
dc.subject | Magnetism | en_US |
dc.subject | Ferroelectrics | en_US |
dc.subject | Neutron diffraction | en_US |
dc.subject | Synchrotron X-ray diffraction | en_US |
dc.subject.lcc | QD478.D7 | |
dc.subject.lcsh | Solid state chemistry | en_US |
dc.subject.lcsh | Ferromagnetic materials | en_US |
dc.subject.lcsh | Ferroelectric crystals | en_US |
dc.title | Structure and properties of some triangular lattice materials | en_US |
dc.type | Thesis | en_US |
dc.type.qualificationlevel | Doctoral | en_US |
dc.type.qualificationname | PhD Doctor of Philosophy | en_US |
dc.publisher.institution | The University of St Andrews | en_US |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.