St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of non-isotropic scattering of thermal radiation on spectra of brown dwarfs and hot exoplanets

Thumbnail
View/Open
aa17015_11.pdf (248.4Kb)
Date
07/2011
Author
de Kok, R. J.
Stam, D. M.
Woitke, Peter
Witte, S.
Helling, Christiane
Keywords
Radiative transfer
Planets and satellites
Atmosphere
Brown dwarfs
Infrared
QB Astronomy
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. Currently, the thermal emission from exoplanets can be measured with either direct imaging or secondary eclipse measurements of transiting exoplanets. Most of these measurements are taken at near-infrared wavelengths, where the thermal emission of these planets peaks. Cool brown dwarfs, covering a similar temperature range, are also mostly characterised using near-infrared spectra. Aims. We aim to show how thermal radiation in brown dwarf and exoplanet atmospheres can be scattered by clouds and haze and to investigate how the thermal emission spectrum is changed when different assumptions in the radiative transfer modelling are made. Methods. We calculate near-infrared thermal emission spectra using a doubling-adding radiative transfer code, which includes scattering by clouds and haze. Initial temperature profiles and cloud optical depths are taken from the drift-phoenix brown dwarf model. Results. As is well known, cloud particles change the spectrum compared to the same atmosphere with the clouds ignored. The clouds reduce fluxes in the near-infrared spectrum and make it redder than for the clear sky case. We also confirm that not including scattering in the spectral calculations can result in errors on the spectra of many tens of percent, both in magnitude and in variations with wavelength. This is especially apparent for particles that are larger than the wavelength and only have little iron in them. Scattering particles will show deeper absorption features than absorbing (e. g. iron) particles and scattering and particle size will also affect the calculated infrared colours. Large particles also tend to be strongly forward-scattering, and we show that assuming isotropic scattering in this case also leads to very large errors in the spectrum. Thus, care must be taken in the choice of radiative transfer method for heat balance or spectral calculations when clouds are present in the atmosphere. Besides the choice of radiative transfer method, the type of particles that are predicted by models will change conclusions about e. g. infrared colours and trace gas abundances. As a result, knowledge of the scattering properties of the clouds is essential when deriving temperature profiles or gas abundances from direct infrared observations of exoplanets or brown dwarfs and from secondary eclipse measurements of transiting exoplanets, since scattering clouds will change the depth of gas absorption features, among other things. Thus, ignoring the presence of clouds can yield retrieved properties that differ significantly from the real atmospheric properties.
Citation
de Kok , R J , Stam , D M , Woitke , P , Witte , S & Helling , C 2011 , ' The influence of non-isotropic scattering of thermal radiation on spectra of brown dwarfs and hot exoplanets ' , Astronomy & Astrophysics , vol. 531 , A67 . https://doi.org/10.1051/0004-6361/201117015
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201117015
ISSN
0004-6361
Type
Journal article
Rights
© 2011, ESO. A&A 531, A67 (2011). Reproduced with permission from the publishers.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/4375

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter