Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorPagano, Paolo
dc.contributor.authorMackay, Duncan Hendry
dc.contributor.authorPoedts, Stefaan
dc.date.accessioned2013-12-03T16:31:02Z
dc.date.available2013-12-03T16:31:02Z
dc.date.issued2013-12-02
dc.identifier.citationPagano , P , Mackay , D H & Poedts , S 2013 , ' Effect of gravitational stratification on the propagation of a CME ' , Astronomy & Astrophysics , vol. 560 , A38 . https://doi.org/10.1051/0004-6361/201322036en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 83174585
dc.identifier.otherPURE UUID: c325bb26-8f7b-4192-9c01-efe6c7514eb7
dc.identifier.otherArXiv: http://arxiv.org/abs/1310.6960v1
dc.identifier.otherScopus: 84889011625
dc.identifier.otherORCID: /0000-0001-6065-8531/work/58055446
dc.identifier.urihttps://hdl.handle.net/10023/4244
dc.description.abstractOur aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. We ran a set of MHD simulations that adopt an eruptive initial magnetic configuration that has already been shown to be suitable for a flux rope ejection. We varied the temperature of the backgroud corona and the intensity of the initial magnetic field to tune the gravitational stratification and the amount of ejected magnetic flux. We used an automatic technique to track the expansion and the propagation of the magnetic flux rope in the MHD simulations. From the analysis of the parameter space, we evaluate the role of gravitational stratification on the CME speed and expansion. Our study shows that gravitational stratification plays a significant role in determining whether the flux rope ejection will turn into a full CME or whether the magnetic flux rope will stop in the corona. The CME speed is affected by the background corona where it travels faster when the corona is colder and when the initial magnetic field is more intense. The fastest CME we reproduce in our parameter space travels at 850 km/s. Moreover, the background gravitational stratification plays a role in the side expansion of the CME, and we find that when the background temperature is higher, the resulting shape of the CME is flattened more. Our study shows that although the initiation mechanisms of the CME are purely magnetic, the background coronal plasma plays a key role in the CME propagation, and full MHD models should be applied when one focusses especially on the production of a CME from a flux rope ejection.
dc.format.extent9
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rights© ESO, 2013. This Astronomy & Astrophysics article, Vol 560, article no. A38 is available at http://www.aanda.org/en
dc.subjectCoronal mass ejections (CMEs)en
dc.subjectMagnetohydrodynamics (MHD)en
dc.subjectFlux rope ejectionen
dc.subjectGravitational stratificationen
dc.subjectQB Astronomyen
dc.subject.lccQBen
dc.titleEffect of gravitational stratification on the propagation of a CMEen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorThe Leverhulme Trusten
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201322036
dc.description.statusPeer revieweden
dc.identifier.grantnumberST/K000950/1en
dc.identifier.grantnumberRPG-305en


This item appears in the following Collection(s)

Show simple item record