Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorMiller, Alan
dc.contributor.authorMalins, David B
dc.coverage.spatial175en
dc.date.accessioned2007-12-21T12:00:05Z
dc.date.available2007-12-21T12:00:05Z
dc.date.issued2008-06-24
dc.identifier.urihttps://hdl.handle.net/10023/404
dc.description.abstractThe quantum confined Stark effect (QCSE) and ultrafast absorption dynamics near the bandedge have been investigated in p-i-n waveguides comprising quantum confined heterostructures grown on GaAs substrates, for emission at 1.3um. The materials are; isolated InAs/InGaAs dot-in-a-well (DWELL) quantum dots (QD), bilayer InAs quantum dots and GaInNAs multiple quantum wells (MQW). The focus was to investigate these dynamics in a planar waveguide geometry, for the purpose of large scale integration in optical systems. Initial measurements of the QCSE using photocurrent measurements showed a small shift for isolated QDs whilst a significant shift of 40nm (at 1340nm) was demonstrated for bilayer dots, comparable to that of GaInNAs MWQ (30nm at 1300nm). These are comparable to InP based quaternary multiple quantum wells used in modulator devices. With the use of a broadband continuum source the isolated quantum dots exhibit both a small QCSE (15nm at 1280nm) and minimal broadening which is desirable for saturable absorbers used in monolithic modelocked semiconductor lasers (MMSL). A robust experimental set-up was developed for characterising waveguide modulators whilst the electroabsorption and electro-refraction was calculated (dn=1.5x10⠻³) using the Kramers-Kronig dispersion relation. Pump probe measurements were performed at room temperature using 250fs pulses from an optical parametric oscillator (OPO) on the three waveguide samples. For the isolated QDs ultrafast absorption recovery was recorded from 62ps (0V) to 700fs (-10V and the shortest times shown to be due to tunneling. Additionally we have shown good agreement of the temperature dependence of these dots and the pulse width durations from a modelocked semiconductor laser using the same material. Bilayer QDs are shown to exhibit ultrafast absorption recovery from 119ps (0V) to 5ps (-10V) offering potential for applications as modelocking elements. The GaInNAs multiple quantum wells show absorption recovery of 55ps (0V), however under applied reverse bias they exhibit long lived field screening transients. These results are explained qualitatively by the spatial separation of electrons and holes at heterobarrier interfaces.en
dc.format.extent4852666 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/
dc.subjectQuantum doten
dc.subjectQuantum wellen
dc.subjectSemiconductoren
dc.subjectQuantum confined Stark effecten
dc.subject.lccQC611.6Q35M2
dc.subject.lcshSemiconductor lasersen
dc.subject.lcshSemiconductors--Materialsen
dc.subject.lcshPicosecond pulsesen
dc.subject.lcshHeterostructuresen
dc.subject.lcshQuantum dotsen
dc.subject.lcshQuantum wellsen
dc.titleUltrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructuresen
dc.typeThesisen
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.publisher.institutionThe University of St Andrewsen


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NoDerivs 3.0 Unported