The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 48 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
RichardTathamPhDThesis.pdf3.89 MBAdobe PDFView/Open
Title: Quantum correlations in and beyond quantum entanglement in bipartite continuous variable systems
Authors: Tatham, Richard
Supervisors: Korolkova, Natalia
Keywords: Entanglement
Issue Date: 30-Nov-2012
Abstract: This thesis explores the role of non-classical correlations in bipartite continuous variable quantum systems, and the approach taken is three-fold. We show that given two initially entangled atomic ensembles, it is possible to probabilistically increase the entanglement between them using a beamsplitter-like interaction formed from two quantum non-demolition (QND) interactions with auxiliary polarised light modes. We then develop an elegant method to calculate density matrix elements of non-Gaussian bipartite quantum states and use this to show that the entanglement in a two mode squeezed vacuum can be distilled using QND interactions and non-Gaussian elements. Secondly, we introduce a potential new measure of quantum entanglement in bipartite Gaussian states. This measure has an operational meaning in quantum cryptography and provides an upper bound on the amount of a secret key that can be distilled from a Gaussian probability distribution shared by two conspirators, Alice and Bob, given the presence of an eavesdropper, Eve. Finally, we go beyond the realm of quantum entanglement to explore other non-classical correlations in continuous variable systems. We provide solutions for a number of these measures on two mode Gaussian states and introduce the Gaussian Ameliorated Measurement Induced Disturbance (GAMID). The interplay between these different measures and quantum entanglement is examined. We then attempt to take small steps into the non-Gaussian regime by computing these non-classicality measures on the three-parameter continuous variable Werner states.
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses

This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)