St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding the origin of ³⁵/³⁷ Cl and ¹⁶/¹⁸O isotope effects on ¹⁹⁵Pt and ¹⁰³Rh NMR nuclear shielding in selected Pt(lV) and Rh(lll) Complexes : a DFT study

Thumbnail
View/Open
JohnChristopherDavisPhDThesis.pdf (3.662Mb)
JohnChristopherDavisAppendixB.pdf (270.1Kb)
Date
2013
Author
Davis, John C.
Supervisor
Bühl, Michael
Koch, Klaus R.
Funder
Stellenbosch University
Anglo Platinum Ltd.
Keywords
NMR
Platinum
DFT
Rhodium
Metadata
Show full item record
Abstract
Distinctive fine-structure due to ³⁵Cl/³⁷Cl isotopologue and isotopomer effects is resolved at high magnetic fields for ¹⁹⁵Pt and ¹⁰³Rh NMR signals, resulting in a unique NMR “finger-print”, with which it is possible to uniquely identify all chlorido containing Pt(IV) and Rh(III) complexes. In this study, these isotope shifts are computed from first principles in order to provide a solid theoretical framework for the empirical observations. Use is made of DFT to calculate the ³⁵/³⁷Cl and ¹⁶/¹⁸O induced isotope shifts in the ¹⁹⁵Pt NMR spectra of [Pt³⁵Cl₆]²⁻ and [Pt³⁷Cl₆]²⁻, for the [Pt³⁵Cl n ³⁷Cl₅₋ n(H₂O)]⁻ (n=0-5), cis-Pt³⁵Cln³⁷Cl₍₄₋n₎(H₂O)₂ (n=0-4), and fac-[Pt³⁵Cl n³⁷Cl₍₃₋ n₎(H₂O)₃]⁺ (n=0-3) series. The computational protocol is extended to calculate the ³⁵/³⁷Cl and ¹⁶/¹⁸O induced isotope shifts in [Pt³⁵Cl n³⁷Cl₍₅₋ n₎(OH)]²⁻ (n=0-5), cis- [Pt³⁵Cln³⁷Cl₍₄₋ n₎(OH)₂]²⁻ (n=0-4), fac-[Pt³⁵Cln³⁷Cl₍₃₋ n₎(OH)₃] ²⁻ (n=0-3), cis- [Pt³⁵Cl n³⁷Cl₂₋n(OH)₄]²⁻ (n=0-2) and [Pt³⁵Cl n³⁷Cl₍₁₋ n₎(OH)₅]²⁻ (n=0-1). For Rh(III), the ³⁵Cl/³⁷Cl isotope shifts in the ¹⁰³Rh NMR spectra of [Rh³⁵Cl n³⁷Cl₅₋ n(H₂O)] ²⁻ (n=0-5), cis-[Rh³⁵Cl n³⁷Cl₍₄₋ n₎(H₂O)₂]⁻ (n=0-4), and fac-Rh³⁵Cl n³⁷Cl₍₃₋ n₎(H₂O)₃ (n=0-3) were calculated. The ¹⁹⁵Pt and ¹⁰³Rh NMR chemical shifts computed for these species reproduce the order of magnitude of the observed effect reasonably well, up to ca. 1 ppm. In most cases, general trends are also captured qualitatively, thus providing the first theoretical basis for the origin of subtle isotope shifts in ¹⁹⁵Pt NMR spectra. Neither simple polarizable continuum models nor small, microsolvated complexes lead to improved isotope shifts for the series investigated, however, valuable insight into the degree of solvent interaction was gained. Using the polarized continuum model to calculate shielding/bond-length derivatives together with gas-phase zero-point corrections to estimate shieldings, it was shown that the contraction of the coordination sphere in the hydroxide complexes cause the Pt-Cl bonds to become magnetically equivalent, justifying why their isotopomers aren’t resolved. In this study, theoretical modelling of structural effects on NMR parameters extends to the smallest scale, distance changes of a few femtometers upon isotopic substitution.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/3824

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter