St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Pure Mathematics
  • Pure Mathematics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ends of semigroups

Thumbnail
View/Open
SimonCraikPhDThesis.pdf (756.9Kb)
Date
2013
Author
Craik, Simon
Supervisor
Mitchell, James David
Ruškuc, Nik
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The aim of this thesis is to understand the algebraic structure of a semigroup by studying the geometric properties of its Cayley graph. We define the notion of the partial order of ends of the Cayley graph of a semigroup. We prove that the structure of the ends of a semigroup is invariant under change of finite generating set and at the same time is inherited by subsemigroups and extensions of finite Rees index. We prove an analogue of Hopfs Theorem, stating that a group has 1, 2 or infinitely many ends, for left cancellative semigroups and that the cardinality of the set of ends is invariant in subsemigroups and extension of finite Green index in left cancellative semigroups. We classify all semigroups with one end and make use of this classification to prove various finiteness properties for semigroups with one end. We also consider the ends of digraphs with certain algebraic properties. We prove that two quasi-isometric digraphs have isomorphic end sets. We also prove that vertex transitive digraphs have 1, 2 or infinitely many ends and construct a topology that reflects the properties of the ends of a digraph.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Pure Mathematics Theses
URI
http://hdl.handle.net/10023/3590

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter