Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLim, Ji-Hyun
dc.contributor.authorIggo, Richard Derek
dc.contributor.authorBarker, Daniel
dc.date.accessioned2013-05-01T15:01:02Z
dc.date.available2013-05-01T15:01:02Z
dc.date.issued2013-06
dc.identifier.citationLim , J-H , Iggo , R D & Barker , D 2013 , ' Models incorporating chromatin modification data identify functionally important p53 binding sites ' , Nucleic Acids Research , vol. 41 , no. 11 , pp. 5582-5593 . https://doi.org/10.1093/nar/gkt260en
dc.identifier.issn0305-1048
dc.identifier.otherPURE: 42873991
dc.identifier.otherPURE UUID: b6ccb989-195c-4150-a491-69e3b6c7e68d
dc.identifier.otherScopus: 84878844695
dc.identifier.otherWOS: 000320116200012
dc.identifier.urihttps://hdl.handle.net/10023/3504
dc.description.abstractGenome-wide prediction of transcription factor binding sites is notoriously difficult. We have developed and applied a logistic regression approach for prediction of binding sites for the p53 transcription factor that incorporates sequence information and chromatin modification data. We tested this by comparison of predicted sites with known binding sites defined by chromatin immunoprecipitation (ChIP), by the location of predictions relative to genes, by the function of nearby genes and by analysis of gene expression data after p53 activation. We compared the predictions made by our novel model with predictions based only on matches to a sequence position weight matrix (PWM). In whole genome assays, the fraction of known sites identified by the two models was similar, suggesting that there was little to be gained from including chromatin modification data. In contrast, there were highly significant and biologically relevant differences between the two models in the location of the predicted binding sites relative to genes, in the function of nearby genes and in the responsiveness of nearby genes to p53 activation. We propose that these contradictory results can be explained by PWM and ChIP data reflecting primarily biophysical properties of protein–DNA interactions, whereas chromatin modification data capture biologically important functional information.
dc.format.extent12
dc.language.isoeng
dc.relation.ispartofNucleic Acids Researchen
dc.rights(c) The Author(s) 2013. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.comen
dc.subjectQH426 Geneticsen
dc.subject.lccQH426en
dc.titleModels incorporating chromatin modification data identify functionally important p53 binding sitesen
dc.typeJournal articleen
dc.contributor.sponsorBBSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. School of Medicineen
dc.contributor.institutionUniversity of St Andrews. Centre for Evolution, Genes and Genomicsen
dc.identifier.doihttps://doi.org/10.1093/nar/gkt260
dc.description.statusPeer revieweden
dc.identifier.grantnumberBB/D526845/1en


This item appears in the following Collection(s)

Show simple item record