St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Short and long supports for constraint propagation

Thumbnail
View/Open
live_3749_6780_jair.pdf (488.2Kb)
Date
01/2013
Author
Nightingale, Peter
Gent, Ian Philip
Jefferson, Christopher Anthony
Miguel, Ian James
Keywords
QA75 Electronic computers. Computer science
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Special-purpose constraint propagation algorithms frequently make implicit use of short supports -- by examining a subset of the variables, they can infer support (a justification that a variable-value pair may still form part of an assignment that satisfies the constraint) for all other variables and values and save substantial work -- but short supports have not been studied in their own right. The two main contributions of this paper are the identification of short supports as important for constraint propagation, and the introduction of HaggisGAC, an efficient and effective general purpose propagation algorithm for exploiting short supports. Given the complexity of HaggisGAC, we present it as an optimised version of a simpler algorithm ShortGAC. Although experiments demonstrate the efficiency of ShortGAC compared with other general-purpose propagation algorithms where a compact set of short supports is available, we show theoretically and experimentally that HaggisGAC is even better. We also find that HaggisGAC performs better than GAC-Schema on full-length supports. We also introduce a variant algorithm HaggisGAC-Stable, which is adapted to avoid work on backtracking and in some cases can be faster and have significant reductions in memory use. All the proposed algorithms are excellent for propagating disjunctions of constraints. In all experiments with disjunctions we found our algorithms to be faster than Constructive Or and GAC-Schema by at least an order of magnitude, and up to three orders of magnitude.
Citation
Nightingale , P , Gent , I P , Jefferson , C A & Miguel , I J 2013 , ' Short and long supports for constraint propagation ' , Journal of Artificial Intelligence Research , vol. 46 , pp. 1-45 . https://doi.org/10.1613/jair.3749
Publication
Journal of Artificial Intelligence Research
Status
Peer reviewed
DOI
https://doi.org/10.1613/jair.3749
ISSN
1076-9757
Type
Journal article
Rights
(c) 2013 AI Access Foundation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/3503

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter