St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using INLA to fit a complex point process model with temporally varying effects – a case study

Thumbnail
View/Open
JES_Illian_et_al.pdf (2.162Mb)
Date
07/2012
Author
Illian, Janine Baerbel
Soerbye, S
Rue, H
Hendrichsen, D
Keywords
Spatial point process
Spatial scale
Replicated patterns
QA Mathematics
Metadata
Show full item record
Abstract
Integrated nested Laplace approximation (INLA) provides a fast and yet quite exact approach to fitting complex latent Gaussian models which comprise many statistical models in a Bayesian context, including log Gaussian Cox processes. This paper discusses how a joint log Gaussian Cox process model may be fitted to independent replicated point patterns. We illustrate the approach by fitting a model to data on the locations of muskoxen (Ovibos moschatus) herds in Zackenberg valley, Northeast Greenland and by detailing how this model is specified within the R-interface R-INLA. The paper strongly focuses on practical problems involved in the modelling process, including issues of spatial scale, edge effects and prior choices, and finishes with a discussion on models with varying boundary conditions.
Citation
Illian , J B , Soerbye , S , Rue , H & Hendrichsen , D 2012 , ' Using INLA to fit a complex point process model with temporally varying effects – a case study ' , Journal of Environmental Statistics , vol. 3 , no. 7 .
Publication
Journal of Environmental Statistics
Status
Peer reviewed
ISSN
1945-1296
Type
Journal article
Rights
(c) 2012 The authors. This is an open access article available under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) which permits anyone to download, reuse, reprint, modify, distribute, and/or copy articles in Journal of Environmental Statistics, so long as the original authors and source are credited.
Collections
  • University of St Andrews Research
URL
http://www.math.ntnu.no/inla/r-inla.org/papers/S17-2010.pdf
http://www.jenvstat.org/v03/i07/paper
URI
http://hdl.handle.net/10023/3306

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter