An update on MyoD evolution in teleosts and a proposed consensus nomenclature to accommodate the tetraploidization of different vertebrate genomes
Date
06/02/2008Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Background: MyoD is a muscle specific transcription factor that is essential for vertebrate myogenesis. In several teleost species, including representatives of the Salmonidae and Acanthopterygii, but not zebrafish, two or more MyoD paralogues are conserved that are thought to have arisen from distinct, possibly lineage-specific duplication events. Additionally, two MyoD paralogues have been characterised in the allotetraploid frog, Xenopus laevis. This has lead to a confusing nomenclature since MyoD paralogues have been named outside of an appropriate phylogenetic framework. Methods and Principal Findings: Here we initially show that directly depicting the evolutionary relationships of teleost MyoD orthologues and paralogues is hindered by the asymmetric evolutionary rate of Acanthopterygian MyoD2 relative to other MyoD proteins. Thus our aim was to confidently position the event from which teleost paralogues arose in different lineages by a comparative investigation of genes neighbouring myod across the vertebrates. To this end, we show that genes on the single myod-containing chromosome of mammals and birds are retained in both zebrafish and Acanthopterygian teleosts in a striking pattern of double conserved synteny. Further, phylogenetic reconstruction of these neighbouring genes using Bayesian and maximum likelihood methods supported a common origin for teleost paralogues following the split of the Actinopterygii and Sarcopterygii. Conclusion: Our results strongly suggest that myod was duplicated during the basal teleost whole genome duplication event, but was subsequently lost in the Ostariophysi ( zebrafish) and Protacanthopterygii lineages. We propose a sensible consensus nomenclature for vertebrate myod genes that accommodates polyploidization events in teleost and tetrapod lineages and is justified from a phylogenetic perspective.
Citation
Macqueen , D J & Johnston , I A 2008 , ' An update on MyoD evolution in teleosts and a proposed consensus nomenclature to accommodate the tetraploidization of different vertebrate genomes ' , PLoS One , vol. 3 , no. 2 , e1567 . https://doi.org/10.1371/journal.pone.0001567
Publication
PLoS One
Status
Peer reviewed
ISSN
1932-6203Type
Journal article
Rights
© 2008 Macqueen, Johnston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Description
DJM was supported by a Natural Environment Research Council studentship (NERC/S/A/2004/12435).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.