The University of St Andrews

Research@StAndrews:FullText >
Computer Science (School of) >
Computer Science >
Computer Science Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 99 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
AngusMacdonaldPhDThesis.pdf3.18 MBAdobe PDFView/Open
Title: The architecture of an autonomic, resource-aware, workstation-based distributed database system
Authors: Macdonald, Angus
Supervisors: Dearle, Alan
Kirby, Graham N. C.
Issue Date: 30-Nov-2012
Abstract: Distributed software systems that are designed to run over workstation machines within organisations are termed workstation-based. Workstation-based systems are characterised by dynamically changing sets of machines that are used primarily for other, user-centric tasks. They must be able to adapt to and utilize spare capacity when and where it is available, and ensure that the non-availability of an individual machine does not affect the availability of the system. This thesis focuses on the requirements and design of a workstation-based database system, which is motivated by an analysis of existing database architectures that are typically run over static, specially provisioned sets of machines. A typical clustered database system — one that is run over a number of specially provisioned machines — executes queries interactively, returning a synchronous response to applications, with its data made durable and resilient to the failure of machines. There are no existing workstation-based databases. Furthermore, other workstation-based systems do not attempt to achieve the requirements of interactivity and durability, because they are typically used to execute asynchronous batch processing jobs that tolerate data loss — results can be re-computed. These systems use external servers to store the final results of computations rather than workstation machines. This thesis describes the design and implementation of a workstation-based database system and investigates its viability by evaluating its performance against existing clustered database systems and testing its availability during machine failures.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Computer Science Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)