The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 23 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
The full text of this document is not available.pdfPlaceholder Document4.23 kBAdobe PDFView/Open
Title: Lewis base organocatalysts for carboxyl and acyl transfer reactions
Authors: Woods, Philip A.
Supervisors: Smith, Andrew David
Keywords: Asymmetric organocatalysis
Lewis base catalysts
Carboxyl and acyl transfer reactions
Issue Date: 15-Aug-2011
Abstract: This thesis is concerned with the use of Lewis base organocatalysts for carboxyl and acyl transfer reactions. Chapter 1 introduces the ability of organic Lewis bases other than DMAP-type to promote a range of asymmetric O-, N- and C-acyl transfer processes. This chapter summarizes the developments in catalyst architectures and approaches to these processes that have been disclosed to date in this dynamic area of asymmetric organocatalysis. Chapter 2 introduces studies into the synthesis of pyrrolyl carbonates via cyclization of gamma-amino esters and ring closing metathesis (RCM) of N-allylamides. The ability of a range of Lewis bases to promote the regioselective O- to C-carboxyl transfer of pyrrolyl carbonates is also presented. Chapter 3 introduces isothiourea DHPB as an efficient Lewis base catalyst for the diastereoselective C-acylation of silyl ketene acetals with anhydrides or benzoyl fluoride, giving 3-acyl-3-aryl or 3-acyl-3-alkylfuranones in excellent yields and stereoselectivities (up to 99:1 dr). Chapter 4 introduces C(2)-aryl substituted DHPB derived-isothioureas as efficient Lewis base catalysts for the enantioselective C-acylation of silyl ketene acetals with propionic anhydride, giving 3-acyl-3-aryl or 3-acyl-3-alkylfuranones in good isolated yields and enantioselectivities (up to 98% ee). This chapter also demonstrates that these chiral isothioureas are required for high reactivity and asymmetry in related acylation manifolds. Chapter 5 presents and overall conclusion for chapters 2,3 and 4. Chapter 6 contains full experimental procedures and characterization data for all compounds synthesized in Chapters 2, 3 and 4.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)