The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 10 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
The full text of this document is not available.pdf6.2 kBAdobe PDFView/Open
Title: Investigations into the role of α-amino acids as chiral modifiers for Ni-based enantioselective heterogeneous hydrogenation catalysts
Authors: Wilson, Karen E.
Supervisors: Baddeley, Christopher J.
Keywords: Heterogeneous
Aspartic acid
Ultra-high vacuum
Liquid-solid interface
Issue Date: 30-Nov-2011
Abstract: The hydrogenation of β-ketoesters over chirally modified Ni catalysts is a celebrated and thoroughly researched example of an enantioselective heterogeneous catalytic reaction. Enantioselective heterogeneous processes, although extremely attractive in terms of fewer complications in the separation of products from the catalyst, are hindered in their viability as industrial applications due to the lack of detailed knowledge on how chirality is conferred to the metal surface. Surface science techniques have afforded substantial progress into determining mechanisms between modifier, reactant and catalyst to explain the source of enantioselectivity of the system. In this study, a combination of solution and ultra-high vacuum (UHV)-based experiments allow a more realistic interpretation of the surface chemistry underpinning the catalytic reaction as the key step in achieving enantioselective performance is the adsorption of chiral modifiers from solution. The behaviour of (S)-aspartic acid and (S)-lysine on Ni{111} and their interaction with the prochiral β-ketoester methylacetoacetate is investigated in this study to understand their potential as chiral modifiers for the system. In UHV, scanning tunnelling microscopy (STM), reflection absorption infrared spectroscopy (RAIRS), and temperature programmed desorption (TPD) are used to analyse the conformation and order of the amino acids on the metal, and their thermal stability. Additionally, liquid-solid interface RAIRS and X-ray photoelectron spectroscopy (XPS) are used to examine the modified Ni surface, prepared under aqueous conditions, to give an accurate representation of the catalytic studies. It has been found highly likely that, for (S)-aspartic acid modified Ni{111}, enantioselective sites exist at step or step/kink defects, formed by corrosive leaching of the Ni substrate. Conversely, lysine appears to bind with a high sticking probability to Ni, in the form of lysine islands, and does not appear to etch the Ni chirally. Finally, similar experiments have been carried out on Au{111}, where lysine was found to chiral restructure the surface and form nanofingers, and 2D Ni clusters grown on Au{111} in order to investigate the formation of possible metal-organic frameworks.
Other Identifiers: 
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses

This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)