Files in this item
Growth of generating sets for direct powers of classical algebraic structures
Item metadata
dc.contributor.author | Quick, Martyn | |
dc.contributor.author | Ruskuc, Nik | |
dc.date.accessioned | 2012-09-01T00:13:54Z | |
dc.date.available | 2012-09-01T00:13:54Z | |
dc.date.issued | 2010-08 | |
dc.identifier.citation | Quick , M & Ruskuc , N 2010 , ' Growth of generating sets for direct powers of classical algebraic structures ' , Journal of the Australian Mathematical Society , vol. 89 , no. 1 , pp. 105-126 . https://doi.org/10.1017/S1446788710001473 | en |
dc.identifier.issn | 1446-7887 | |
dc.identifier.other | PURE: 4157457 | |
dc.identifier.other | PURE UUID: 0f9f7c81-d079-4595-9b3c-93808bc979fc | |
dc.identifier.other | Scopus: 78049256325 | |
dc.identifier.other | WOS: 000283959400008 | |
dc.identifier.other | ORCID: /0000-0002-5227-2994/work/58054909 | |
dc.identifier.other | ORCID: /0000-0003-2415-9334/work/73702033 | |
dc.identifier.uri | http://hdl.handle.net/10023/3058 | |
dc.description.abstract | For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),…), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structures—a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties. | |
dc.format.extent | 22 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of the Australian Mathematical Society | en |
dc.rights | (c) 2010 Australian Mathematical Publishing Association Inc. | en |
dc.subject | Generating sets | en |
dc.subject | Growth | en |
dc.subject | Direct products | en |
dc.subject | Algebraic structures | en |
dc.subject | Universal algebra | en |
dc.subject | QA Mathematics | en |
dc.subject.lcc | QA | en |
dc.title | Growth of generating sets for direct powers of classical algebraic structures | en |
dc.type | Journal article | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1017/S1446788710001473 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2012-09-01 |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.