Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRajan, Akhil
dc.contributor.authorBuchberger, Sebastian
dc.contributor.authorEdwards, Brendan Mark
dc.contributor.authorZivanovic, Andela
dc.contributor.authorKushwaha, Naina
dc.contributor.authorBigi, Chiara
dc.contributor.authorNanao, Yoshiko
dc.contributor.authorSaika, Bruno
dc.contributor.authorArmitage, Olivia Rachel
dc.contributor.authorWahl, Peter
dc.contributor.authorCouture, P
dc.contributor.authorKing, Phil
dc.date.accessioned2024-07-10T09:30:26Z
dc.date.available2024-07-10T09:30:26Z
dc.date.issued2024-06-28
dc.identifier303582734
dc.identifier126617c9-4c14-4576-8102-f7ae4a98cc10
dc.identifier.citationRajan , A , Buchberger , S , Edwards , B M , Zivanovic , A , Kushwaha , N , Bigi , C , Nanao , Y , Saika , B , Armitage , O R , Wahl , P , Couture , P & King , P 2024 , ' Epitaxial growth of large-area monolayers and van der Waals heterostructures of transition-metal chalcogenides via assisted nucleation ' , Advanced Materials , vol. Early View , 2402254 . https://doi.org/10.1002/adma.202402254en
dc.identifier.issn0935-9648
dc.identifier.otherORCID: /0000-0002-0376-2903/work/163570391
dc.identifier.otherORCID: /0000-0002-8635-1519/work/163570765
dc.identifier.otherORCID: /0000-0003-0015-0220/work/163571279
dc.identifier.otherORCID: /0000-0001-5356-3032/work/163571296
dc.identifier.urihttps://hdl.handle.net/10023/30138
dc.descriptionFunding: We gratefully acknowledge support from the Leverhulme Trust (Grant No. RL-2016-006) and the Engineering and Physical Sciences Research Council (Grant Nos. EP/X015556/1 and EP/M023958/1). S.B. and A.Z. gratefully acknowledge studentship support from the International Max-Planck Research School for Chemistry and Physics of Quantum Materials.en
dc.description.abstractThe transition-metal chalcogenides include some of the most important and ubiquitous families of 2D materials. They host an exceptional variety of electronic and collective states, which can in principle be readily tuned by combining different compounds in van der Waals heterostructures. Achieving this, however, presents a significant materials challenge. The highest quality heterostructures are usually fabricated by stacking layers exfoliated from bulk crystals, which – while producing excellent prototype devices – is time consuming, cannot be easily scaled, and can lead to significant complications for materials stability and contamination. Growth via the ultra-high vacuum deposition technique of molecular-beam epitaxy (MBE) should be a premier route for 2D heterostructure fabrication, but efforts to achieve this are complicated by non-uniform layer coverage, unfavorable growth morphologies, and the presence of significant rotational disorder of the grown epilayer. This work demonstrates a dramatic enhancement in the quality of MBE grown 2D materials by exploiting simultaneous deposition of a sacrificial species from an electron-beam evaporator during the growth. This approach dramatically enhances the nucleation of the desired epi-layer, in turn enabling the synthesis of large-area, uniform monolayers with enhanced quasiparticle lifetimes, and facilitating the growth of epitaxial van der Waals heterostructures.
dc.format.extent9
dc.format.extent3563771
dc.language.isoeng
dc.relation.ispartofAdvanced Materialsen
dc.subject2D materialsen
dc.subjectElectronic propertiesen
dc.subjectMolecular beam epitaxyen
dc.subjectNucleationen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleEpitaxial growth of large-area monolayers and van der Waals heterostructures of transition-metal chalcogenides via assisted nucleationen
dc.typeJournal articleen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1002/adma.202402254
dc.description.statusPeer revieweden
dc.identifier.grantnumber2016-006en
dc.identifier.grantnumberEP/X015556/1en
dc.identifier.grantnumberEP/M023958/1en


This item appears in the following Collection(s)

Show simple item record