Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorDalaka, Eleni
dc.contributor.authorHill, Joseph Samuel
dc.contributor.authorBooth, Jonathan H H
dc.contributor.authorPopczyk, A
dc.contributor.authorPulver, Stefan Robert
dc.contributor.authorGather, Malte Christian
dc.contributor.authorSchubert, Marcel
dc.date.accessioned2024-06-06T15:30:06Z
dc.date.available2024-06-06T15:30:06Z
dc.date.issued2024-06-05
dc.identifier301200773
dc.identifier3a2c45cc-7439-4610-9d29-20bddf488975
dc.identifier85195377913
dc.identifier.citationDalaka , E , Hill , J S , Booth , J H H , Popczyk , A , Pulver , S R , Gather , M C & Schubert , M 2024 , ' Deformable microlaser force sensing ' , Light: Science & Applications , vol. 13 , 129 . https://doi.org/10.1038/s41377-024-01471-9en
dc.identifier.issn2047-7538
dc.identifier.otherORCID: /0000-0002-4857-5562/work/161228890
dc.identifier.otherORCID: /0000-0001-5170-7522/work/161229104
dc.identifier.urihttps://hdl.handle.net/10023/30003
dc.descriptionFunding: This work received financial support from EPSRC (EP/P030017/1), the Humboldt Foundation (Alexander von Humboldt Professorship), European Union's Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE) Deutsche Forschungsgemeinschaft (469988234), and instrument funding by the Deutsche Forschungsgemeinschaft in cooperation with the Ministerium für Kunst und Wissenschaft of North Rhine-Westphalia (INST 216/1120-1 FUGG). MS acknowledges funding by the Royal Society (Dorothy Hodgkin Fellowship, DH160102; Enhancement Award, RGF∖EA∖180051).en
dc.description.abstractMechanical forces are key regulators of cellular behavior and function, affecting many fundamental biological processes such as cell migration, embryogenesis, immunological responses, and pathological states. Specialized force sensors and imaging techniques have been developed to quantify these otherwise invisible forces in single cells and in vivo. However, current techniques rely heavily on high-resolution microscopy and do not allow interrogation of optically dense tissue, reducing their application to 2D cell cultures and highly transparent biological tissue. Here, we introduce DEFORM, deformable microlaser force sensing, a spectroscopic technique that detects sub-nanonewton forces with unprecedented spatio-temporal resolution. DEFORM is based on the spectral analysis of laser emission from dye-doped oil microdroplets and uses the force-induced lifting of laser mode degeneracy in these droplets to detect nanometer deformations. Following validation by atomic force microscopy and development of a model that links changes in laser spectrum to applied force, DEFORM is used to measure forces in 3D and at depths of hundreds of microns within tumor spheroids and late-stage Drosophila larva. We furthermore show continuous force sensing with single-cell spatial and millisecond temporal resolution, thus paving the way for non-invasive studies of biomechanical forces in advanced stages of embryogenesis, tissue remodeling, and tumor invasion.
dc.format.extent14
dc.format.extent2659130
dc.language.isoeng
dc.relation.ispartofLight: Science & Applicationsen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleDeformable microlaser force sensingen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Centre for Higher Education Researchen
dc.contributor.institutionUniversity of St Andrews. School of Psychology and Neuroscienceen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Organic Semiconductor Centreen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1038/s41377-024-01471-9
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/P030017/1en
dc.identifier.grantnumber640012en
dc.identifier.grantnumberRGF/EA/180051en


This item appears in the following Collection(s)

Show simple item record