Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBunschoten, Roderick P.
dc.contributor.authorPeschke, Frederik
dc.contributor.authorTaladriz-Sender, Andrea
dc.contributor.authorAlexander, Emma
dc.contributor.authorAndrews, Matthew J.
dc.contributor.authorKennedy, Alan R.
dc.contributor.authorFazakerley, Neal J.
dc.contributor.authorLloyd Jones, Guy C.
dc.contributor.authorWatson, Allan J. B.
dc.contributor.authorBurley, Glenn A.
dc.date.accessioned2024-05-10T14:30:09Z
dc.date.available2024-05-10T14:30:09Z
dc.date.issued2024-05-07
dc.identifier302033263
dc.identifier8a95bda9-10f3-49c7-ba13-5fd0534e48e9
dc.identifier85192959980
dc.identifier.citationBunschoten , R P , Peschke , F , Taladriz-Sender , A , Alexander , E , Andrews , M J , Kennedy , A R , Fazakerley , N J , Lloyd Jones , G C , Watson , A J B & Burley , G A 2024 , ' Mechanistic basis of the Cu(OAc) 2 catalyzed azide-ynamine (3 + 2) cycloaddition reaction ' , Journal of the American Chemical Society , vol. 146 , no. 19 , pp. 13558–13570 . https://doi.org/10.1021/jacs.4c03348en
dc.identifier.issn0002-7863
dc.identifier.otherRIS: urn:9CA3D54DE889C68BEC57F07EA1DBC9C8
dc.identifier.otherORCID: /0000-0002-1582-4286/work/159433349
dc.identifier.urihttps://hdl.handle.net/10023/29863
dc.descriptionR.P.B. and G.A.B. thank GSK and the Engineering and Physical Sciences Research Council (EPSRC) for an industrial CASE studentship (EP/P51066X/1). G.A.B., F.P., and A.J.B.W. thank the Leverhulme Trust (RP-2020-380). A.T.S. and G.A.B. thank the Biotechnology and Biological Research Council (BBSRC) for its support (BB/V017586/1; BB/T000627/1). A.J.B.W. and M.J.A. thank the EPSRC for its support (EP/R025754/1). A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship (RF-2022-014).en
dc.description.abstractThe Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction is used as a ligation tool throughout chemical and biological sciences. Despite the pervasiveness of CuAAC, there is a need to develop more efficient methods to form 1,4-triazole ligated products with low loadings of Cu. In this paper, we disclose a mechanistic model for the ynamine-azide (3 + 2) cycloadditions catalyzed by copper(II) acetate. Using multinuclear nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and high-performance liquid chromatography analyses, a dual catalytic cycle is identified. First, the formation of a diyne species via Glaser–Hay coupling of a terminal ynamine forms a Cu(I) species competent to catalyze an ynamine-azide (3 + 2) cycloaddition. Second, the benzimidazole unit of the ynamine structure has multiple roles: assisting C–H activation, Cu coordination, and the formation of a postreaction resting state Cu complex after completion of the (3 + 2) cycloaddition. Finally, reactivation of the Cu resting state complex is shown by the addition of isotopically labeled ynamine and azide substrates to form a labeled 1,4-triazole product. This work provides a mechanistic basis for the use of mixed valency binuclear catalytic Cu species in conjunction with Cu-coordinating alkynes to afford superior reactivity in CuAAC reactions. Additionally, these data show how the CuAAC reaction kinetics can be modulated by changes to the alkyne substrate, which then has a predictable effect on the reaction mechanism.
dc.format.extent3892570
dc.language.isoeng
dc.relation.ispartofJournal of the American Chemical Societyen
dc.subjectDASen
dc.titleMechanistic basis of the Cu(OAc)2 catalyzed azide-ynamine (3 + 2) cycloaddition reactionen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.identifier.doi10.1021/jacs.4c03348
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R025754/1en
dc.identifier.grantnumberRF-2022-014en


This item appears in the following Collection(s)

Show simple item record