Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBoden, Joanne
dc.contributor.authorZhong, Juntao
dc.contributor.authorAnderson, Rika
dc.contributor.authorStueeken, Eva Elisabeth
dc.date.accessioned2024-05-02T15:30:05Z
dc.date.available2024-05-02T15:30:05Z
dc.date.issued2024-05-02
dc.identifier300304791
dc.identifier7a75aa3e-bc8a-4f9f-b883-162d8f47401e
dc.identifier85191966836
dc.identifier.citationBoden , J , Zhong , J , Anderson , R & Stueeken , E E 2024 , ' Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics ' , Nature Communications , vol. 15 , 3703 . https://doi.org/10.1038/S41467-024-47914-0en
dc.identifier.issn2041-1723
dc.identifier.otherORCID: /0000-0001-6861-2490/work/159010867
dc.identifier.otherORCID: /0000-0003-0412-3668/work/159010904
dc.identifier.urihttps://hdl.handle.net/10023/29800
dc.description.abstractPhosphorus plays a crucial role in controlling biological productivity, but geological estimates of phosphate concentrations in the Precambrian ocean, during life’s origin and early evolution, vary over several orders of magnitude. While reduced phosphorus species may have served as alternative substrates to phosphate, their bioavailability on the early Earth remains unknown. Here, we reconstruct the phylogenomic record of life on Earth and find that phosphate transporting genes (pnas) evolved in the Paleoarchean (ca. 3.6-3.2 Ga) and are consistent with phosphate concentrations above modern levels ( > 3 µM). The first gene optimized for low phosphate levels (pstS; <1 µM) appeared around the same time or in the Mesoarchean depending on the reconstruction method. Most enzymatic pathways for metabolising reduced phosphorus emerged and expanded across the tree of life later. This includes phosphonate-catabolising CP-lyases, phosphite-oxidising pathways and hypophosphite-oxidising pathways. CP-lyases are particularly abundant in dissolved phosphate concentrations below 0.1 µM. Our results thus indicate at least local regions of declining phosphate levels through the Archean, possibly linked to phosphate-scavenging Fe(III), which may have limited productivity. However, reduced phosphorus species did not become widely used until after the Paleoproterozoic Great Oxidation Event (2.3 Ga), possibly linked to expansion of the biosphere at that time.
dc.format.extent12
dc.format.extent2068998
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.subjectEvolutionen
dc.subjectEarly lifeen
dc.subjectPhosphorusen
dc.subjectMicrobiologyen
dc.subjectPhylogenomicsen
dc.subjectMolecular clocken
dc.subjectArcheanen
dc.subjectGreat Oxidation Eventen
dc.subjectPrecambrianen
dc.subjectGenome miningen
dc.subjectQR Microbiologyen
dc.subjectQH Natural historyen
dc.subjectQ Scienceen
dc.subjectGeneticsen
dc.subjectEarth and Planetary Sciences(all)en
dc.subjectDASen
dc.subjectNERCen
dc.subject.lccQRen
dc.subject.lccQHen
dc.subject.lccQen
dc.titleTiming the evolution of phosphorus-cycling enzymes through geological time using phylogenomicsen
dc.typeJournal articleen
dc.contributor.sponsorNERCen
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews. St Andrews Centre for Exoplanet Scienceen
dc.identifier.doi10.1038/S41467-024-47914-0
dc.description.statusPeer revieweden
dc.identifier.grantnumberNE/V010824/1en


This item appears in the following Collection(s)

Show simple item record