Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorZhang, Nuoxi
dc.contributor.authorNaden, Aaron B.
dc.contributor.authorZhang, Lihong
dc.contributor.authorYang, Xiaoxia
dc.contributor.authorConnor, Paul A.
dc.contributor.authorIrvine, John T. S.
dc.date.accessioned2024-02-20T12:30:34Z
dc.date.available2024-02-20T12:30:34Z
dc.date.issued2024-05-09
dc.identifier295348121
dc.identifier1386bd29-ac87-4f4b-952b-3523c70fc7b2
dc.identifier85185138361
dc.identifier.citationZhang , N , Naden , A B , Zhang , L , Yang , X , Connor , P A & Irvine , J T S 2024 , ' Enhanced CO 2 electrolysis through Mn substitution coupled with Ni exsolution in lanthanum calcium titanate electrodes ' , Advanced Materials , vol. 36 , no. 19 , 2308481 . https://doi.org/10.1002/adma.202308481en
dc.identifier.issn0935-9648
dc.identifier.otherORCID: /0000-0002-8394-3359/work/153976997
dc.identifier.otherORCID: /0000-0002-1492-7590/work/153977359
dc.identifier.otherORCID: /0000-0003-2876-6991/work/153977415
dc.identifier.urihttps://hdl.handle.net/10023/29302
dc.descriptionFunding: This work was financially supported by the Industrial Decarbonisation Research and Innovation Centre. Further support was kindly provided by EPSRC, under research grant numbers EP/L017008/1, EP/R023751/1 and EP/T019298/1.en
dc.description.abstractIn this study, perovskite oxides La0.3Ca0.6Ni0.05MnxTi0.95−xO3−γ (x = 0, 0.05, 0.10) are investigated as potential solid oxide electrolysis cell cathode materials. The catalytic activity of these cathodes toward CO2 reduction reaction is significantly enhanced through the exsolution of highly active Ni nanoparticles, driven by applying a current of 1.2 A in 97% CO2 – 3% H2O. The performance of La0.3Ca0.6Ni0.05Ti0.95O3−γ is notably improved by co-doping with Mn. Mn dopants enhance the reducibility of Ni, a crucial factor in promoting the in situ exsolution of metallic nanocatalysts in perovskite (ABO3) structures. This improvement is attributed to Mn dopants enabling more flexible coordination, resulting in higher oxygen vacancy concentration, and facilitating oxygen ion migration. Consequently, a higher density of Ni nanoparticles is formed. These oxygen vacancies also improve the adsorption, desorption, and dissociation of CO2 molecules. The dual doping strategy provides enhanced performance without degradation observed after 133 h of high-temperature operation, suggesting a reliable cathode material for CO2 electrolysis.
dc.format.extent11
dc.format.extent5386768
dc.language.isoeng
dc.relation.ispartofAdvanced Materialsen
dc.subjectCO2 electrolysisen
dc.subjectin situ exsolutionen
dc.subjectNanoparticlesen
dc.subjectPerovkitesen
dc.subjectSolid oxide electrolysis cellsen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccQDen
dc.titleEnhanced CO2 electrolysis through Mn substitution coupled with Ni exsolution in lanthanum calcium titanate electrodesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. St Andrews Sustainability Instituteen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.identifier.doihttps://doi.org/10.1002/adma.202308481
dc.description.statusPeer revieweden
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberEP/R023751/1en
dc.identifier.grantnumberEP/T019298/1en
dc.identifier.grantnumberEP/V027050/1en


This item appears in the following Collection(s)

Show simple item record