Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorTitze, Vera M
dc.contributor.authorCaixeiro, Soraya
dc.contributor.authorDinh, Vinh San
dc.contributor.authorKönig, Matthias
dc.contributor.authorRübsam, Matthias
dc.contributor.authorPathak, Nachiket
dc.contributor.authorSchumacher, Anna-Lena
dc.contributor.authorGermer, Maximilian
dc.contributor.authorKukat, Christian
dc.contributor.authorNiessen, Carien M
dc.contributor.authorSchubert, Marcel
dc.contributor.authorGather, Malte C
dc.date.accessioned2024-02-14T12:30:06Z
dc.date.available2024-02-14T12:30:06Z
dc.date.issued2024-01-18
dc.identifier298791750
dc.identifier82cdb640-73eb-410e-ad17-7c6f68f31892
dc.identifier38238582
dc.identifier85182722370
dc.identifier.citationTitze , V M , Caixeiro , S , Dinh , V S , König , M , Rübsam , M , Pathak , N , Schumacher , A-L , Germer , M , Kukat , C , Niessen , C M , Schubert , M & Gather , M C 2024 , ' Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers ' , Nature Protocols . https://doi.org/10.1038/s41596-023-00924-6en
dc.identifier.issn1754-2189
dc.identifier.otherJisc: 1723293
dc.identifier.otherpii: 10.1038/s41596-023-00924-6
dc.identifier.otherORCID: /0000-0002-4857-5562/work/152318583
dc.identifier.otherORCID: /0000-0003-0724-7084/work/157578075
dc.identifier.urihttps://hdl.handle.net/10023/29234
dc.descriptionFunding: This work received financial support from the Leverhulme Trust (RPG-2017-231), the European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE), EPSRC (EP/P030017/1), the Humboldt Foundation (Alexander von Humboldt professorship) and the RS Macdonald Charitable Trust (St Andrews Seedcorn Fund for Neurological Research). M.S. acknowledges funding from the European Commission (Marie Skłodowska-Curie Individual Fellowship, 659213) and the Royal Society (Dorothy Hodgkin Fellowship, DH160102; Research Grant, RGF\R1\180070; Enhancement Award, RGF\EA\180051).en
dc.description.abstractIntegrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires
dc.format.extent32
dc.format.extent1983354
dc.language.isoeng
dc.relation.ispartofNature Protocolsen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subjectACen
dc.subject.lccQCen
dc.titleHyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasersen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorEuropean Commissionen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. Centre for Ancient Environmental Studiesen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1038/s41596-023-00924-6
dc.description.statusPeer revieweden
dc.identifier.grantnumber640012en
dc.identifier.grantnumber659213en
dc.identifier.grantnumberDH160102en
dc.identifier.grantnumberRGF/R1/180070en
dc.identifier.grantnumberRGF/EA/180051en
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record