Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMaity, Shiny
dc.contributor.authorPrice, Brad D.
dc.contributor.authorWilson, C. Blake
dc.contributor.authorMukherjee, Arnab
dc.contributor.authorStarck, Matthieu
dc.contributor.authorParker, David
dc.contributor.authorWilson, Maxwell Z.
dc.contributor.authorLovett, Janet E.
dc.contributor.authorHan, Songi
dc.contributor.authorSherwin, Mark S.
dc.date.accessioned2024-02-14T00:35:27Z
dc.date.available2024-02-14T00:35:27Z
dc.date.issued2023-03-20
dc.identifier282957862
dc.identifiera7941678-be78-4c19-9aa9-8499c210c2bd
dc.identifier85147898769
dc.identifier.citationMaity , S , Price , B D , Wilson , C B , Mukherjee , A , Starck , M , Parker , D , Wilson , M Z , Lovett , J E , Han , S & Sherwin , M S 2023 , ' Triggered functional dynamics of AsLOV2 by time-resolved electron paramagnetic resonance at high magnetic fields ' , Angewandte Chemie International Edition , vol. 62 , no. 13 , e202212832 . https://doi.org/10.1002/anie.202212832en
dc.identifier.issn1433-7851
dc.identifier.otherRIS: urn:99E1CF195D40282E2ED6D7AA5A806F7C
dc.identifier.otherORCID: /0000-0002-3561-450X/work/129147932
dc.identifier.urihttps://hdl.handle.net/10023/29230
dc.descriptionFunding: The authors would like to acknowledge support from the NSF though grant MCB 2025860 and the UC Office of the President Multicampus Research Programs and Initiatives under MRI-19-601107 for the development of TiGGER and the core research presented here. Biochemical and complementary biophysical studies of AsLOV2 were supported by the NIH MIRA through grant R35GM136411. JEL thanks The Royal Society for a University Research Fellowship.en
dc.description.abstractWe present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein's mechanical cycle in solution state. TiGGER makes use of Gd-sTPATCN as spin labels, whose favorable qualities include a spin-7 / 2 EPR-active center, a short linker, a narrow intrinsic linewidth, and virtually no anisotropy at high magnetic fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we are able to determine that upon light activation, the J α -helix and N-terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER reveals that the light-activated longrange mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. Our results demonstrate that TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.
dc.format.extent9
dc.format.extent3930719
dc.language.isoeng
dc.relation.ispartofAngewandte Chemie International Editionen
dc.subjectBiophysicsen
dc.subjectProtein structuresen
dc.subjectEPR spectroscopyen
dc.subjectDipolar broadeningen
dc.subjectTime-resolved spectroscopyen
dc.subjectQC Physicsen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subjectMCCen
dc.subject.lccQCen
dc.subject.lccQDen
dc.titleTriggered functional dynamics of AsLOV2 by time-resolved electron paramagnetic resonance at high magnetic fieldsen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1002/anie.202212832
dc.description.statusPeer revieweden
dc.date.embargoedUntil2024-02-14
dc.identifier.grantnumberUF090121en


This item appears in the following Collection(s)

Show simple item record