Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAntonelli, Tommaso
dc.contributor.authorRajan, Akhil
dc.contributor.authorWatson, Matthew David
dc.contributor.authorSoltani, Shoresh
dc.contributor.authorHoughton, J
dc.contributor.authorSiemann, Gesa-Roxanne
dc.contributor.authorZivanovic, Andela
dc.contributor.authorBigi, Chiara
dc.contributor.authorEdwards, Brendan Mark
dc.contributor.authorKing, Phil
dc.date.accessioned2023-12-21T10:30:04Z
dc.date.available2023-12-21T10:30:04Z
dc.date.issued2024-01-10
dc.identifier297390563
dc.identifier355e48ed-8cf1-4379-9b22-4d922284f850
dc.identifier85180934619
dc.identifier.citationAntonelli , T , Rajan , A , Watson , M D , Soltani , S , Houghton , J , Siemann , G-R , Zivanovic , A , Bigi , C , Edwards , B M & King , P 2024 , ' Controlling the charge density wave transition in single-layer TiTe 2x Se 2(1−x) alloys by band gap engineering ' , Nano Letters , vol. 24 , no. 1 , 3c03776 , pp. 215-221 . https://doi.org/10.1021/acs.nanolett.3c03776en
dc.identifier.issn1530-6984
dc.identifier.otherORCID: /0000-0003-0029-5059/work/149333045
dc.identifier.otherORCID: /0000-0001-5356-3032/work/149333105
dc.identifier.otherORCID: /0000-0002-7219-4241/work/151190656
dc.identifier.urihttps://hdl.handle.net/10023/28921
dc.descriptionFunding: We gratefully acknowledge support from the Leverhulme Trust via Grant No. RL-2016-006 and the UK Royal Society. The MBE growth facility was funded through an EPSRC strategic equipment grant: EP/M023958/1.en
dc.description.abstractClosing the band gap of a semiconductor, into a semimetallic state, gives a powerful potential route to tune the electronic energy gains that drive collective phases like charge density waves (CDW) and excitonic insulator states. We explore this approach for the controversial CDW material monolayer (ML) TiSe2 by engineering its narrow band gap to the semimetallic limit of ML-TiTe2. Using molecular beam epitaxy, we demonstrate the growth of ML-TiTe2xSe2(1−x) alloys across the entire compositional range, and unveil how the (2 × 2) CDW instability evolves through the normal state semiconductor-semimetal transition via in situ angle-resolved photoemission spectroscopy. Through model electronic structure calculations, we identify how this tunes the relative strength of excitonic and Peierls-like coupling, demonstrating band gap engineering as a powerful method for controlling the microscopic mechanisms underpinning the formation of collective states in two-dimensional materials.
dc.format.extent7
dc.format.extent3903555
dc.language.isoeng
dc.relation.ispartofNano Lettersen
dc.subject2D materialsen
dc.subjectTransition-metal dichalcogenideen
dc.subjectCharge density waveen
dc.subjectExcitonic insulatoren
dc.subjectAngle-resolved photoemission spectroscopyen
dc.subjectMolecular beam epitaxyen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleControlling the charge density wave transition in single-layer TiTe2xSe2(1−x) alloys by band gap engineeringen
dc.typeJournal itemen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.sponsorThe Royal Societyen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1021/acs.nanolett.3c03776
dc.description.statusPeer revieweden
dc.identifier.grantnumber2016-006en
dc.identifier.grantnumberURF/R/180026en
dc.identifier.grantnumberEP/M023958/1en


This item appears in the following Collection(s)

Show simple item record