Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMorizet, Josephine
dc.contributor.authorChow, Darren
dc.contributor.authorWijesinghe, Philip
dc.contributor.authorSchartner, Erik
dc.contributor.authorDwapanyin, George
dc.contributor.authorDubost, Nicolas
dc.contributor.authorBruce, Graham D.
dc.contributor.authorAnckaert, Ellen
dc.contributor.authorDunning, Kylie
dc.contributor.authorDholakia, Kishan
dc.date.accessioned2023-11-17T11:30:01Z
dc.date.available2023-11-17T11:30:01Z
dc.date.issued2023-11-13
dc.identifier294618875
dc.identifier66412b31-1f30-456b-a6be-01670b14ea64
dc.identifier85178113651
dc.identifier.citationMorizet , J , Chow , D , Wijesinghe , P , Schartner , E , Dwapanyin , G , Dubost , N , Bruce , G D , Anckaert , E , Dunning , K & Dholakia , K 2023 , ' UVA hyperspectral light-sheet microscopy for volumetric metabolic imaging : application to preimplantation embryo development ' , ACS Photonics , vol. Articles ASAP . https://doi.org/10.1021/acsphotonics.3c00900en
dc.identifier.issn2330-4022
dc.identifier.otherORCID: /0000-0003-3403-0614/work/146960628
dc.identifier.otherORCID: /0000-0002-8378-7261/work/146962695
dc.identifier.urihttps://hdl.handle.net/10023/28725
dc.descriptionFunding: This work was supported by funding from the UK Engineering and Physical Sciences Research Council (EP/P030017/1, EP/R004854/1), the Australian Research Council (FL210100099), the National Health and Medical Research Council (APP2003786), and the European Union’s Horizon 2020 research and innovation program under the H2020 FETOPEN project “Dynamic” (EC-GA 863203) and “Proscope” (871212). K.R.D is supported by a Hospital Research Foundation Fellowship (Midcareer fellowship C-MCF-58-2019) and a Future Making Fellowship (University of Adelaide).en
dc.description.abstractCellular metabolism is a key regulator of energetics, cell growth, regeneration, and homeostasis. Spatially mapping the heterogeneity of cellular metabolic activity is of great importance for unraveling the overall cell and tissue health. In this regard, imaging the endogenous metabolic cofactors, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), with subcellular resolution and in a noninvasive manner would be useful to determine tissue and cell viability in a clinical environment, but practical use is limited by current imaging techniques. In this paper, we demonstrate the use of phasor-based hyperspectral light-sheet (HS-LS) microscopy using a single UVA excitation wavelength as a route to mapping metabolism in three dimensions. We show that excitation solely at a UVA wavelength of 375 nm can simultaneously excite NAD(P)H and FAD autofluorescence, while their relative contributions can be readily quantified using a hardware-based spectral phasor analysis. We demonstrate the potential of our HS-LS system by capturing dynamic changes in metabolic activity during preimplantation embryo development. To validate our approach, we delineate metabolic changes during preimplantation embryo development from volumetric maps of metabolic activity. Importantly, our approach overcomes the need for multiple excitation wavelengths, two-photon imaging, or significant postprocessing of data, paving the way toward clinical translation, such as in situ, noninvasive assessment of embryo viability.
dc.format.extent11
dc.format.extent4867901
dc.language.isoeng
dc.relation.ispartofACS Photonicsen
dc.subjectLight-sheeten
dc.subjectAutofluorescenceen
dc.subjectLabel-free imagingen
dc.subjectEmbryologyen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleUVA hyperspectral light-sheet microscopy for volumetric metabolic imaging : application to preimplantation embryo developmenten
dc.typeJournal articleen
dc.contributor.sponsorEuropean Commissionen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doi10.1021/acsphotonics.3c00900
dc.description.statusPeer revieweden
dc.identifier.grantnumber871212en
dc.identifier.grantnumberEP/R004854/1en
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record